TY - JOUR
T1 - Reflection intensity waveform inversion
AU - Liu, Yike
AU - He, Bin
AU - Zhang, Zhendong
AU - Zheng, Yingcai
AU - Li, Peng
N1 - KAUST Repository Item: Exported on 2021-02-16
Acknowledgements: We would like to express our sincere gratitude to S. Xu and H. Zhou for their insightful discussions. We also thank the associate editor T. Alkhalifah, editor-in-chief J. Shragge, assistant editor A. Cheng, and four anonymous reviewers for the constructive comments. The research was partially funded by the National Nature Science Foundation of China (grant nos. 41730425 and 41430321) and IGGCAS (grant no. 2019031).
PY - 2020/4/8
Y1 - 2020/4/8
N2 - Traditional iteration-based full-waveform inversion (FWI) methods encounter serious challenges if the initial velocity model is far from the true model or if the observed data are lacking low-frequency content. As such, the optimization algorithm may be trapped in local minima and fail to go to a global optimal model. In addition, the traditional FWI method requires long-offset data to update the deep structure of a velocity model with diving waves. To overcome the disadvantages of traditional FWI under these circumstances, we have developed a reflection intensity waveform inversion method. This method aims to minimize the seismic intensity differences between the modeled reflection data and field data. Our method is less dependent on the starting model, and long-offset data are no longer required. The wave intensity, proportional to the square of the original data amplitude, can have a low-frequency band and a higher frequency band, even for waveforms without initial low-frequency content. Our multiscale intensity inversion starts from the low-frequency information in the intensity data, and it can largely avoid the cycle-skipping problem. Synthetic and field data examples demonstrate that our method is able to overcome cycle skipping in handling data with no low-frequency information.
AB - Traditional iteration-based full-waveform inversion (FWI) methods encounter serious challenges if the initial velocity model is far from the true model or if the observed data are lacking low-frequency content. As such, the optimization algorithm may be trapped in local minima and fail to go to a global optimal model. In addition, the traditional FWI method requires long-offset data to update the deep structure of a velocity model with diving waves. To overcome the disadvantages of traditional FWI under these circumstances, we have developed a reflection intensity waveform inversion method. This method aims to minimize the seismic intensity differences between the modeled reflection data and field data. Our method is less dependent on the starting model, and long-offset data are no longer required. The wave intensity, proportional to the square of the original data amplitude, can have a low-frequency band and a higher frequency band, even for waveforms without initial low-frequency content. Our multiscale intensity inversion starts from the low-frequency information in the intensity data, and it can largely avoid the cycle-skipping problem. Synthetic and field data examples demonstrate that our method is able to overcome cycle skipping in handling data with no low-frequency information.
UR - http://hdl.handle.net/10754/667409
UR - https://library.seg.org/doi/10.1190/geo2019-0590.1
U2 - 10.1190/geo2019-0590.1
DO - 10.1190/geo2019-0590.1
M3 - Article
SN - 0016-8033
VL - 85
SP - R263-R273
JO - GEOPHYSICS
JF - GEOPHYSICS
IS - 3
ER -