Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat

M. Gowda, Y. Zhao, T. Würschum, C. Fh Longin, T. Miedaner, E. Ebmeyer, R. Schachschneider, E. Kazman, J. Schacht, J. P. Martinant, M. F. Mette, J. C. Reif*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

53 Scopus citations


The accuracy of genomic selection depends on the relatedness between the members of the set in which marker effects are estimated based on evaluation data and the types for which performance is predicted. Here, we investigate the impact of relatedness on the performance of marker-assisted selection for fungal disease resistance in hybrid wheat. A large and diverse mapping population of 1739 elite European winter wheat inbred lines and hybrids was evaluated for powdery mildew, leaf rust and stripe rust resistance in multi-location field trials and fingerprinted with 9 k and 90 k SNP arrays. Comparison of the accuracies of prediction achieved with data sets from the two marker arrays revealed a crucial role for a sufficiently high marker density in genome-wide association mapping. Cross-validation studies using test sets with varying degrees of relationship to the corresponding estimation sets revealed that close relatedness leads to a substantial increase in the proportion of total genotypic variance explained by the identified QTL and consequently to an overoptimistic judgment of the precision of marker-assisted selection.

Original languageEnglish (US)
Pages (from-to)552-561
Number of pages10
Issue number5
StatePublished - May 2014
Externally publishedYes

ASJC Scopus subject areas

  • Genetics
  • Genetics(clinical)


Dive into the research topics of 'Relatedness severely impacts accuracy of marker-assisted selection for disease resistance in hybrid wheat'. Together they form a unique fingerprint.

Cite this