TY - JOUR
T1 - Removal of Sb(III) by sulfidated nanoscale zerovalent iron: The mechanism and impact of environmental conditions
AU - Liu, Sishi
AU - Feng, Haopeng
AU - Tang, Lin
AU - Dong, Haoran
AU - Wang, Jiajia
AU - Yu, Jiangfang
AU - Feng, Chengyang
AU - Liu, Yani
AU - Luo, Ting
AU - Ni, Ting
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-23
PY - 2020/9/20
Y1 - 2020/9/20
N2 - Pollution of Sb(III) in water has caused great concern in recent years. Nanoscale zero-valent iron (nZVI) can detoxify Sb(III) polluted water, but the rapid passivation and low adsorption capacity limit its practical application. Hence, this study provides a new and efficient nanotechnology to remove Sb(III) using the sulfidated nanoscale zero-valent iron (S-nZVI). The S-nZVI exhibits higher Sb(III)-removal efficiency than pristine nZVI under both aerobic and anoxic conditions. The adsorption capacity of Sb(III) by optimized S-nZVI (465.1 mg/g) is 6 times as high as that of the pristine nZVI (83.3 mg/g) under aerobic conditions. The results indicate that Sb(III) and Sb(V) can be immobilized on the surface of S-nZVI by forming Fe-S-Sb precipitates. Moreover, characterization results demonstrate that the existence of S2− can not only activate H2O2 to produce hydroxyl radical, but also accelerate the cycle of Fe3+/Fe2+ to improve the efficiency of Fenton reaction. Therefore, S-nZVI can produce more hydroxyl radicals to oxidize Sb (III) to Sb (V) and results in 2.3-fold higher oxidation rate of Sb(III) compared to pristine nZVI. The formed FeS layer on the S-nZVI surface can also improve the release ability of Fe2+ and accelerate the formation of nZVI corrosion products. S-nZVI thus holds great potential to be applied in antimony removal.
AB - Pollution of Sb(III) in water has caused great concern in recent years. Nanoscale zero-valent iron (nZVI) can detoxify Sb(III) polluted water, but the rapid passivation and low adsorption capacity limit its practical application. Hence, this study provides a new and efficient nanotechnology to remove Sb(III) using the sulfidated nanoscale zero-valent iron (S-nZVI). The S-nZVI exhibits higher Sb(III)-removal efficiency than pristine nZVI under both aerobic and anoxic conditions. The adsorption capacity of Sb(III) by optimized S-nZVI (465.1 mg/g) is 6 times as high as that of the pristine nZVI (83.3 mg/g) under aerobic conditions. The results indicate that Sb(III) and Sb(V) can be immobilized on the surface of S-nZVI by forming Fe-S-Sb precipitates. Moreover, characterization results demonstrate that the existence of S2− can not only activate H2O2 to produce hydroxyl radical, but also accelerate the cycle of Fe3+/Fe2+ to improve the efficiency of Fenton reaction. Therefore, S-nZVI can produce more hydroxyl radicals to oxidize Sb (III) to Sb (V) and results in 2.3-fold higher oxidation rate of Sb(III) compared to pristine nZVI. The formed FeS layer on the S-nZVI surface can also improve the release ability of Fe2+ and accelerate the formation of nZVI corrosion products. S-nZVI thus holds great potential to be applied in antimony removal.
UR - https://linkinghub.elsevier.com/retrieve/pii/S0048969720331491
UR - http://www.scopus.com/inward/record.url?scp=85085237697&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2020.139629
DO - 10.1016/j.scitotenv.2020.139629
M3 - Article
SN - 1879-1026
VL - 736
JO - Science of the Total Environment
JF - Science of the Total Environment
ER -