Resource-bounded machines are motivated to be effective, efficient, and curious

Bas R. Steunebrink, Jan Koutník, Kristinn R. Thórisson, Eric Nivel, Jürgen Schmidhuber

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Resource-boundedness must be carefully considered when designing and implementing artificial general intelligence (AGI) algorithms and architectures that have to deal with the real world. But not only must resources be represented explicitly throughout its design, an agent must also take into account their usage and the associated costs during reasoning and acting. Moreover, the agent must be intrinsically motivated to become progressively better at utilizing resources. This drive then naturally leads to effectiveness, efficiency, and curiosity. We propose a practical operational framework that explicitly takes into account resource constraints: activities are organized to maximally utilize an agent's bounded resources as well as the availability of a teacher, and to drive the agent to become progressively better at utilizing its resources. We show how an existing AGI architecture called AERA can function inside this framework. In short, the capability of AERA to perform self-compilation can be used to motivate the system to not only accumulate knowledge and skills faster, but also to achieve goals using less resources, becoming progressively more effective and efficient. © 2013 Springer-Verlag.
Original languageEnglish (US)
Title of host publicationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Pages119-129
Number of pages11
DOIs
StatePublished - Jul 15 2013
Externally publishedYes

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Resource-bounded machines are motivated to be effective, efficient, and curious'. Together they form a unique fingerprint.

Cite this