TY - GEN
T1 - Response of an electrostatically actuated microbeam to drop-table test
AU - Ouakad, H.
AU - Younis, M. I.
AU - Alsaleem, F.
AU - Levo, T.
AU - Pitarresi, J.
PY - 2010
Y1 - 2010
N2 - In this work, we present a theoretical and experimental investigation into the response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler-Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse ofthe drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over wide range of shock spanning hundred of thousand of g's up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 microns is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is demonstrated also that by biasing short and too stiff microbeams with electrostatic voltages, their stiffuess is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with inhouse shock testing equipments, such as drop table tests.
AB - In this work, we present a theoretical and experimental investigation into the response of an electrostatically actuated microbeam when subjected to drop-table test. For the theoretical part, a reduced-order model based on an Euler-Bernoulli beam model is utilized. The model accounts for the electrostatic bias on the microbeam and the shock pulse ofthe drop-table test. Simulation results are presented showing the combined effect of electrostatic force and mechanical shock in triggering early pull-in instability of the cantilever microbeams. Dynamic pull-in threshold as a function of the mechanical shock amplitude is shown over wide range of shock spanning hundred of thousand of g's up to zero g. For the experimental part, a micromachined cantilever beam made of gold of length 50 microns is subjected to drop-table tests while being biased by electrostatic loads. Several experimental data are shown demonstrating the phenomenon of collapse due to the combined shock and electrostatic forces. It is demonstrated also that by biasing short and too stiff microbeams with electrostatic voltages, their stiffuess is weakened. This lowers their threshold of collapse considerably to the range of acceleration that enables testing them with inhouse shock testing equipments, such as drop table tests.
UR - http://www.scopus.com/inward/record.url?scp=77953697056&partnerID=8YFLogxK
U2 - 10.1109/ESIME.2010.5464603
DO - 10.1109/ESIME.2010.5464603
M3 - Conference contribution
AN - SCOPUS:77953697056
SN - 9781424470266
T3 - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
BT - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
T2 - 2010 11th International Conference on Thermal, Mechanical and Multi-Physics Simulation, and Experiments in Microelectronics and Microsystems, EuroSimE 2010
Y2 - 26 April 2010 through 28 April 2010
ER -