TY - JOUR
T1 - Reticular synthesis of HKUST-like tbo MOFs with enhanced CH4 storage
AU - Spanopoulos, Ioannis
AU - Tsangarakis, Constantinos
AU - Klontzas, Emmanuel
AU - Tylianakis, Emmanuel
AU - Froudakis, George
AU - Adil, Karim
AU - Belmabkhout, Youssef
AU - Eddaoudi, Mohamed
AU - Trikalitis, Pantelis N.
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2016/1/5
Y1 - 2016/1/5
N2 - Successful implementation of reticular chemistry using a judiciously designed rigid octatopic carboxylate organic linker allowed the construction of expanded HKUST-1-like tbo-MOF series with intrinsic strong CH4 adsorption sites. The Cu-analogue displayed a concomitant enhancement of the gravimetric and volumetric surface area with the highest reported CH4 uptake among the tbo family, comparable to the best performing MOFs for CH4 storage. The corresponding gravimetric (BET) and volumetric surface area of 3971 m2 g-1 and 2363 m2 cm-3 represent an increase of respectively 115 % and 47 % in comparison to the corresponding values for the prototypical HKUST-1 (tbo-MOF-1), and 42 % and 20 % higher than tbo-MOF-2. High pressure methane adsorption isotherms revealed a high total gravimetric and volumetric CH4 uptakes, reaching 372 cm3 (STP) g-1 and 221 cm3 (STP) cm-3 respectively at 85 bar and 298 K. The corresponding working capacities between 5-80 bar were found to be 294 cm3 (STP) g-1 and 175 cm3 (STP) cm-3 and are placed among the best performing MOFs for CH4 storage particularly at relatively low temperature (e.g. 326 cm3 (STP) g-1 and 194 cm3 (STP) cm-3 at 258 K). To better understand the structure-property relationship and gain insight on the mechanism accounting for the resultant enhanced CH4 storage capacity, molecular simulation study was performed and revealed the presence of very strong CH4 adsorption sites at the vicinity of the organic linker with similar adsorption energetics as the open metal sites. The present findings supports the potential of tbo-MOFs based on the supermolecular building layer (SBL) approach as an ideal platform to further enhance the CH4 storage capacity via expansion and functionalization of the quadrangular pillars.
AB - Successful implementation of reticular chemistry using a judiciously designed rigid octatopic carboxylate organic linker allowed the construction of expanded HKUST-1-like tbo-MOF series with intrinsic strong CH4 adsorption sites. The Cu-analogue displayed a concomitant enhancement of the gravimetric and volumetric surface area with the highest reported CH4 uptake among the tbo family, comparable to the best performing MOFs for CH4 storage. The corresponding gravimetric (BET) and volumetric surface area of 3971 m2 g-1 and 2363 m2 cm-3 represent an increase of respectively 115 % and 47 % in comparison to the corresponding values for the prototypical HKUST-1 (tbo-MOF-1), and 42 % and 20 % higher than tbo-MOF-2. High pressure methane adsorption isotherms revealed a high total gravimetric and volumetric CH4 uptakes, reaching 372 cm3 (STP) g-1 and 221 cm3 (STP) cm-3 respectively at 85 bar and 298 K. The corresponding working capacities between 5-80 bar were found to be 294 cm3 (STP) g-1 and 175 cm3 (STP) cm-3 and are placed among the best performing MOFs for CH4 storage particularly at relatively low temperature (e.g. 326 cm3 (STP) g-1 and 194 cm3 (STP) cm-3 at 258 K). To better understand the structure-property relationship and gain insight on the mechanism accounting for the resultant enhanced CH4 storage capacity, molecular simulation study was performed and revealed the presence of very strong CH4 adsorption sites at the vicinity of the organic linker with similar adsorption energetics as the open metal sites. The present findings supports the potential of tbo-MOFs based on the supermolecular building layer (SBL) approach as an ideal platform to further enhance the CH4 storage capacity via expansion and functionalization of the quadrangular pillars.
UR - http://hdl.handle.net/10754/592640
UR - http://pubs.acs.org/doi/10.1021/jacs.5b11079
UR - http://www.scopus.com/inward/record.url?scp=84958206625&partnerID=8YFLogxK
U2 - 10.1021/jacs.5b11079
DO - 10.1021/jacs.5b11079
M3 - Article
C2 - 26694977
SN - 0002-7863
VL - 138
SP - 1568
EP - 1574
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 5
ER -