Robust online belief space planning in changing environments: Application to physical mobile robots

Ali-akbar Agha-mohammadi, Saurav Agarwal, Aditya Mahadevan, Suman Chakravorty, Daniel Tomkins, Jory Denny, Nancy M. Amato

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Scopus citations

Abstract

© 2014 IEEE. Motion planning in belief space (under motion and sensing uncertainty) is a challenging problem due to the computational intractability of its exact solution. The Feedback-based Information RoadMap (FIRM) framework made an important theoretical step toward enabling roadmap-based planning in belief space and provided a computationally tractable version of belief space planning. However, there are still challenges in applying belief space planners to physical systems, such as the discrepancy between computational models and real physical models. In this paper, we propose a dynamic replanning scheme in belief space to address such challenges. Moreover, we present techniques to cope with changes in the environment (e.g., changes in the obstacle map), as well as unforeseen large deviations in the robot's location (e.g., the kidnapped robot problem). We then utilize these techniques to implement the first online replanning scheme in belief space on a physical mobile robot that is robust to changes in the environment and large disturbances. This method demonstrates that belief space planning is a practical tool for robot motion planning.
Original languageEnglish (US)
Title of host publication2014 IEEE International Conference on Robotics and Automation (ICRA)
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Pages149-156
Number of pages8
ISBN (Print)9781479936854
DOIs
StatePublished - May 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Robust online belief space planning in changing environments: Application to physical mobile robots'. Together they form a unique fingerprint.

Cite this