TY - GEN
T1 - Robust wide range of supply-voltage operation using continuous adaptive size-ratio gates
AU - Kirolos, Sami
AU - Massoud, Yehia
N1 - Generated from Scopus record by KAUST IRTS on 2022-09-13
PY - 2008/9/19
Y1 - 2008/9/19
N2 - In this paper, we present an adaptive circuit design that is capable of increasing the effective size-ratio of combinational logic gates to extend the balanced operation in the subthreshold region as well as to maintain high performance at the nominal VDD. We optimize the sizes of the PMOS transistors in the pull-up network for minimum power dissipation and propagation delay over a wide range of supply voltage. In addition to the minimized energy operation, the dynamically adjustable gate size-ratio allows the gate to preserve a symmetric voltage transfer characteristic at both normal supply and subthreshold operation, which translates to maximized noise margins. Simulation results show that up to 70.9% reduction in the energy can be achieved for a ring oscillator, as compared to the fixed size design capable of operating under supply voltage in the range of 75mV to 1.2V . Our adaptive circuit design presents an efficient solution for minimum energy circuit operation while preserving the high performance capability at the nominal VDD. ©2008 IEEE.
AB - In this paper, we present an adaptive circuit design that is capable of increasing the effective size-ratio of combinational logic gates to extend the balanced operation in the subthreshold region as well as to maintain high performance at the nominal VDD. We optimize the sizes of the PMOS transistors in the pull-up network for minimum power dissipation and propagation delay over a wide range of supply voltage. In addition to the minimized energy operation, the dynamically adjustable gate size-ratio allows the gate to preserve a symmetric voltage transfer characteristic at both normal supply and subthreshold operation, which translates to maximized noise margins. Simulation results show that up to 70.9% reduction in the energy can be achieved for a ring oscillator, as compared to the fixed size design capable of operating under supply voltage in the range of 75mV to 1.2V . Our adaptive circuit design presents an efficient solution for minimum energy circuit operation while preserving the high performance capability at the nominal VDD. ©2008 IEEE.
UR - http://ieeexplore.ieee.org/document/4541647/
UR - http://www.scopus.com/inward/record.url?scp=51749114238&partnerID=8YFLogxK
U2 - 10.1109/ISCAS.2008.4541647
DO - 10.1109/ISCAS.2008.4541647
M3 - Conference contribution
SN - 9781424416844
SP - 1232
EP - 1235
BT - Proceedings - IEEE International Symposium on Circuits and Systems
ER -