Abstract
Ammonia-oxidizing bacteria (AOB) can use oxygen and nitrite as electron acceptors. Nitrite reduction by Nitrosomonas is observed under three conditions: (i) hydrogen-dependent denitrification, (ii) anoxic ammonia oxidation with nitrogen dioxide (NO2) and (iii) NOx-induced aerobic ammonia oxidation. NOx molecules play an important role in the conversion of ammonia and nitrite by AOB. Absence of nitric oxide (NO), which is generally detectable during ammonia oxidation, severely impairs ammonia oxidation by AOB. The lag phase of recovery of aerobic ammonia oxidation was significantly reduced by NO2 addition. Acetylene inhibition tests showed that NO2-dependent and oxygen-dependent ammonia oxidation can be distinguished. Addition of NOx increased specific activity of ammonia oxidation, growth rate and denitrification capacity. Together, these findings resulted in a hypothetical model on the role of NOx in ammonia oxidation: the NOx cycle. ©2006 Biochemical Society.
Original language | English (US) |
---|---|
Title of host publication | Biochemical Society Transactions |
Pages | 179-181 |
Number of pages | 3 |
DOIs | |
State | Published - Feb 1 2006 |
Externally published | Yes |
ASJC Scopus subject areas
- Biochemistry