Role of Steric Hindrance in the Crystal Packing of Z′ = 4 Superstructure of Trimethyltin Hydroxide

S. Dey, A. Schönleber, S. Mondal, S. I. Ali, S. van Smaalen

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

The roomerature crystal structure of trimethyltin hydroxide, (CH)SnOH, has been described by Anderson et al. [Cryst. Growth Des. 2011, 11, 820-826] as a 2a × 2b × 8c, 32-fold superstructure. We report a a × b × 8c, eight-fold superstructure with orthorhombic P2cn symmetry and Z′ = 4. Structured diffuse scattering observed at the positions of presumed superlattice reflections along a∗ and b∗ might have appeared as Bragg reflections in the experiment by Anderson et al. Alternatively, Anderson et al. and the present work might have studied different polymorphs of (CH)SnOH. Crystalline (CH)SnOH constitutes polymeric chains arranged parallel to c. In the eight-fold superstructure at 220 K, the polymeric chains possess a distorted zigzag arrangement of linked linear O-Sn-O units with bent angle at oxygen of ∼139.2°. This structure is essentially different from the 8-helical arrangement in the published 32-fold superstructure model. The origin of the distorted zigzag structure is explained by steric hindrance between hydrogen atoms of adjacent hydroxy groups and (CH)Sn groups. Frustration in the packing of the chains is determined by steric hindrance between methyl groups of neighboring chains, which prevents the formation of interchain C-H···O hydrogen bonds.
Original languageEnglish (US)
Pages (from-to)1394-1400
Number of pages7
JournalCrystal Growth & Design
Volume18
Issue number3
DOIs
StatePublished - Jan 22 2018

Fingerprint

Dive into the research topics of 'Role of Steric Hindrance in the Crystal Packing of Z′ = 4 Superstructure of Trimethyltin Hydroxide'. Together they form a unique fingerprint.

Cite this