Abstract
A new (N2H4)WO3 compound has been obtained by mixing WO3 and aqueous hydrazine solution at room temperature for 24 h. The reaction is catalyzed by the presence of lithium. X-ray, synchrotron and neutron diffraction techniques have shown that the material crystallizes in trigonal space group P3221 (No. 154). Chains of distorted WO4 tetrahedra extend along the a axis of the unit cell, linked by a corner-sharing oxygen atom: the N2H4 are in the voids between them. The thermal characterization shows that this new compound is stable up to 220°C, greatly beyond the boiling point of N2H4 (114°C); thus making it a promising candidate for catalysis or trapping applications.
Original language | English (US) |
---|---|
Pages (from-to) | 127-133 |
Number of pages | 7 |
Journal | Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials |
Volume | 75 |
Issue number | 2 |
DOIs | |
State | Published - Mar 7 2019 |
Fingerprint
Dive into the research topics of 'Room-temperature synthesis of a new stable (N2H4)WO3 compound: a route for hydrazine trapping'. Together they form a unique fingerprint.Datasets
-
CSD 1846977: Experimental Crystal Structure Determination
Giovannelli, F. (Creator), Mathieu, C. (Creator), Fritsch, K. (Creator), Adil, K. (Creator), Goutenoire, F. (Creator), Habicht, K. (Creator), Delorme, F. (Creator), Giovannelli, F. (Creator), Mathieu, C. (Creator), Fritsch, K. (Creator), Goutenoire, F. (Creator), Habicht, K. (Creator) & Delorme, F. (Creator), FIZ Karlsruhe – Leibniz Institute for Information Infrastructure, 2019
DOI: 10.25505/fiz.icsd.cc1zzxxs, http://hdl.handle.net/10754/664499
Dataset