TY - JOUR
T1 - Salt removal using multiple microbial desalination cells under continuous flow conditions
AU - Qu, Youpeng
AU - Feng, Yujie
AU - Liu, Jia
AU - He, Weihua
AU - Shi, Xinxin
AU - Yang, Qiao
AU - Lv, Jiangwei
AU - Logan, Bruce E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: The technical assistance of Prof. Yu Li (Harbin institute of technology) is highly appreciated. This research was supported by the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (2013DX08), the China Postdoctoral Science Foundation (2011M500671), the National Natural Science Foundation of China (51209061), the National Science Foundation for Distinguished Young Scholars of China (51125033), and the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2013/5
Y1 - 2013/5
N2 - Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..
AB - Four microbial desalination cells (MDCs) were hydraulically connected and operated under continuous flow conditions. The anode solution from the first MDC flowed into the cathode, and then on to the anode of the next reactor, which avoided pH imbalances that inhibit bacterial metabolism. The salt solution also moved through each desalination chamber in series. Increasing the hydraulic retention times (HRTs) of the salt solution from 1 to 2. days increased total NaCl removal from 76 ± 1% to 97 ± 1%, but coulombic efficiencies decreased from 49 ± 4% to 35 ± 1%. Total COD removals were similar at both HRTs (60 ± 2%, 2. days; 59 ± 2%, 1. day). Community analysis of the anode biofilms showed that bacteria most similar to the xylose fermenting bacterium Klebsiella ornithinolytica predominated in the anode communities, and sequences most similar to Geobacter metallireducens were identified in all MDCs except the first one. These results demonstrated successful operation of a series of hydraulically connected MDCs and good desalination rates. © 2013 Elsevier B.V..
UR - http://hdl.handle.net/10754/599549
UR - https://linkinghub.elsevier.com/retrieve/pii/S0011916413000799
UR - http://www.scopus.com/inward/record.url?scp=84875532295&partnerID=8YFLogxK
U2 - 10.1016/j.desal.2013.02.016
DO - 10.1016/j.desal.2013.02.016
M3 - Article
SN - 0011-9164
VL - 317
SP - 17
EP - 22
JO - Desalination
JF - Desalination
ER -