Abstract
This article presents a study related to application of pre-chamber ignition system in heavy duty natural gas engine which, as previously shown by the authors, can extend the limit of fuel-lean combustion and hence improve fuel efficiency and reduce emissions. A previous study about the effect of pre-chamber volume and nozzle diameter on a single cylinder 2 liter truck-size engine resulted in recommendations for optimal pre-chamber geometry settings. The current study is to determine the dependency of those settings on the engine size. For this study, experiments are performed on a single cylinder 9 liter large bore marine engine with similar pre-chamber geometry and a test matrix of similar and scaled pre-chamber volume and nozzle diameter settings. The effect of these variations on main chamber ignition and the following combustion is studied to understand the scalability aspects of pre-chamber ignition. Indicated efficiency and engine-out emission data is also presented. It has been found that the performance of a pre-chamber is strongly affected by the size of the engine is it being used in. Even with the same energy content in the pre-chamber at the time of spark, the resulting initial main chamber heat release has been found to scale with engine size, and hence the optimal settings for pre-chamber volume and nozzle diameter are also found to scale with engine size.
Original language | English (US) |
---|---|
Journal | SAE Technical Papers |
DOIs | |
State | Published - Jan 1 2016 |
Event | SAE 2016 World Congress and Exhibition - Detroit, United States Duration: Apr 12 2016 → Apr 14 2016 |
ASJC Scopus subject areas
- Automotive Engineering
- Safety, Risk, Reliability and Quality
- Pollution
- Industrial and Manufacturing Engineering