Abstract
Integration of high performance n-type and p-type field-effect transistors with complementary device operation in the same kind of layered materials is highly desirable for pursuing low power and flexible next-generation electronics. In this work, we have shown a well-mannered growth of MoS2 on a fin-shaped oxide structure and integration of both n-type and p-type MoS2 by using a traditional implantation technique. With the advance of the fin-shaped structure, the maxima and the effective ON current density for the MoS2 fin-shaped field-effect transistors are respectively obtained to be about 50 μA μm−1 (normalized by the circumference of the fin) and around 500 μA μm−1 (only normalized by the fin size), while its ON/OFF ratio is more than 106 with low OFF current of a few pA. Based on our n-type and p-type MoS2 fin-shaped field-effect transistors, the complementary MoS2 inverter with a high DC voltage gain of more than 20 is acquired. Our results provide evidence for complementary 2D material operation in the same materials, a promising avenue for the development of high performance and high-density complementary 2D electronic devices.
Original language | English (US) |
---|---|
Pages (from-to) | 683-688 |
Number of pages | 6 |
Journal | Nanoscale Horizons |
Volume | 4 |
Issue number | 3 |
DOIs | |
State | Published - 2019 |