Scaled unscented transform Gaussian sum filter: Theory and application

Xiaodong Luo, Irene M. Moroz, Ibrahim Hoteit

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

In this work we consider the state estimation problem in nonlinear/non-Gaussian systems. We introduce a framework, called the scaled unscented transform Gaussian sum filter (SUT-GSF), which combines two ideas: the scaled unscented Kalman filter (SUKF) based on the concept of scaled unscented transform (SUT) (Julier and Uhlmann (2004) [16]), and the Gaussian mixture model (GMM). The SUT is used to approximate the mean and covariance of a Gaussian random variable which is transformed by a nonlinear function, while the GMM is adopted to approximate the probability density function (pdf) of a random variable through a set of Gaussian distributions. With these two tools, a framework can be set up to assimilate nonlinear systems in a recursive way. Within this framework, one can treat a nonlinear stochastic system as a mixture model of a set of sub-systems, each of which takes the form of a nonlinear system driven by a known Gaussian random process. Then, for each sub-system, one applies the SUKF to estimate the mean and covariance of the underlying Gaussian random variable transformed by the nonlinear governing equations of the sub-system. Incorporating the estimations of the sub-systems into the GMM gives an explicit (approximate) form of the pdf, which can be regarded as a "complete" solution to the state estimation problem, as all of the statistical information of interest can be obtained from the explicit form of the pdf (Arulampalam et al. (2002) [7]). In applications, a potential problem of a Gaussian sum filter is that the number of Gaussian distributions may increase very rapidly. To this end, we also propose an auxiliary algorithm to conduct pdf re-approximation so that the number of Gaussian distributions can be reduced. With the auxiliary algorithm, in principle the SUT-GSF can achieve almost the same computational speed as the SUKF if the SUT-GSF is implemented in parallel. As an example, we will use the SUT-GSF to assimilate a 40-dimensional system due to Lorenz and Emanuel (1998) [27]. We will present the details of implementing the SUT-GSF and examine the effects of filter parameters on the performance of the SUT-GSF. © 2010 Elsevier B.V. All rights reserved.
Original languageEnglish (US)
Pages (from-to)684-701
Number of pages18
JournalPhysica D: Nonlinear Phenomena
Volume239
Issue number10
DOIs
StatePublished - May 2010

ASJC Scopus subject areas

  • Statistical and Nonlinear Physics
  • Condensed Matter Physics

Fingerprint

Dive into the research topics of 'Scaled unscented transform Gaussian sum filter: Theory and application'. Together they form a unique fingerprint.

Cite this