TY - GEN
T1 - SCCMulti
AU - Tomkins, Daniel
AU - Smith, Timmie
AU - Amato, Nancy M.
AU - Rauchwerger, Lawrence
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-016-04
Acknowledgements: This research supported in part by NSF awards CNS-0551685, CCF-0833199, CCF-0830753, IIS-0916053, IIS-0917266, EFRI-1240483, RI-1217991, by NIH NCI R25 CA090301-11, by DOE awards DE-AC02-06CH11357, B575363, by Samsung, by Award KUS-C1-016-04, made by King Abdullah University of Science and Technology (KAUST). This research used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2014
Y1 - 2014
N2 - Tarjan's famous linear time, sequential algorithm for finding the strongly connected components (SCCs) of a graph relies on depth first search, which is inherently sequential. Deterministic parallel algorithms solve this problem in logarithmic time using matrix multiplication techniques, but matrix multiplication requires a large amount of total work. Randomized algorithms based on reachability - the ability to get from one vertex to another along a directed path - greatly improve the work bound in the average case. However, these algorithms do not always perform well; for instance, Divide-and-Conquer Strong Components (DCSC), a scalable, divide-and-conquer algorithm, has good expected theoretical limits, but can perform very poorly on graphs for which the maximum reachability of any vertex is small. A related algorithm, MultiPivot, gives very high probability guarantees on the total amount of work for all graphs, but this improvement introduces an overhead that increases the average running time. This work introduces SCCMulti, a multi-pivot improvement of DCSC that offers the same consistency as MultiPivot without the time overhead. We provide experimental results demonstrating SCCMulti's scalability; these results also show that SCCMulti is more consistent than DCSC and is always faster than MultiPivot.
AB - Tarjan's famous linear time, sequential algorithm for finding the strongly connected components (SCCs) of a graph relies on depth first search, which is inherently sequential. Deterministic parallel algorithms solve this problem in logarithmic time using matrix multiplication techniques, but matrix multiplication requires a large amount of total work. Randomized algorithms based on reachability - the ability to get from one vertex to another along a directed path - greatly improve the work bound in the average case. However, these algorithms do not always perform well; for instance, Divide-and-Conquer Strong Components (DCSC), a scalable, divide-and-conquer algorithm, has good expected theoretical limits, but can perform very poorly on graphs for which the maximum reachability of any vertex is small. A related algorithm, MultiPivot, gives very high probability guarantees on the total amount of work for all graphs, but this improvement introduces an overhead that increases the average running time. This work introduces SCCMulti, a multi-pivot improvement of DCSC that offers the same consistency as MultiPivot without the time overhead. We provide experimental results demonstrating SCCMulti's scalability; these results also show that SCCMulti is more consistent than DCSC and is always faster than MultiPivot.
UR - http://hdl.handle.net/10754/599564
UR - http://dl.acm.org/citation.cfm?doid=2555243.2555286
UR - http://www.scopus.com/inward/record.url?scp=84896887100&partnerID=8YFLogxK
U2 - 10.1145/2555243.2555286
DO - 10.1145/2555243.2555286
M3 - Conference contribution
SN - 9781450326568
SP - 393
EP - 394
BT - Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel programming - PPoPP '14
PB - Association for Computing Machinery (ACM)
ER -