TY - JOUR
T1 - Secrecy Outage Analysis of Mixed RF-FSO Systems With Channel Imperfection
AU - Lei, Hongjiang
AU - Luo, Haolun
AU - Park, Kihong
AU - Ren, Zhi
AU - pan, Gaofeng
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2021-02-19
Acknowledgements: National Natural Science Foundation of China[61471076]
PY - 2018/6/15
Y1 - 2018/6/15
N2 - We analyze the secrecy outage performance of a mixed radio frequency-free space optical (RF-FSO) transmission system with imperfect channel state information (CSI). We deal with a single input multiple output (SIMO) wiretap model, where a base station (works as the relay) forwards the signal transmitted from a user (source) to a data center (works as the destination), while an eavesdropper wiretaps the confidential information by decoding the received signal. Both the relay and the eavesdropper are armed with multiple antennas and maximal ratio combining scheme is utilized to improve the received signal-to-noise ratio (SNR). The effects of imperfect CSI of the RF link and the FSO link, misalignment, detection schemes, and relaying schemes on the secrecy outage performance of mixed RF-FSO systems are studied. Firstly, the cumulative distribution function and probability density function of FSO links with pointing error and two different detection technologies are derived. Then we derive the closed-form expressions for the lower bound of the secrecy outage probability (SOP) with fixed-gain relaying and variable-gain relaying schemes. Furthermore, asymptotic results for SOP are investigated by exploiting the unfolding of Meijer's G-function when the electrical SNR of FSO link approaches infinity. Finally, Monte-Carlo simulation results are presented to corroborate the correctness of the analysis.
AB - We analyze the secrecy outage performance of a mixed radio frequency-free space optical (RF-FSO) transmission system with imperfect channel state information (CSI). We deal with a single input multiple output (SIMO) wiretap model, where a base station (works as the relay) forwards the signal transmitted from a user (source) to a data center (works as the destination), while an eavesdropper wiretaps the confidential information by decoding the received signal. Both the relay and the eavesdropper are armed with multiple antennas and maximal ratio combining scheme is utilized to improve the received signal-to-noise ratio (SNR). The effects of imperfect CSI of the RF link and the FSO link, misalignment, detection schemes, and relaying schemes on the secrecy outage performance of mixed RF-FSO systems are studied. Firstly, the cumulative distribution function and probability density function of FSO links with pointing error and two different detection technologies are derived. Then we derive the closed-form expressions for the lower bound of the secrecy outage probability (SOP) with fixed-gain relaying and variable-gain relaying schemes. Furthermore, asymptotic results for SOP are investigated by exploiting the unfolding of Meijer's G-function when the electrical SNR of FSO link approaches infinity. Finally, Monte-Carlo simulation results are presented to corroborate the correctness of the analysis.
UR - http://hdl.handle.net/10754/631815
UR - https://ieeexplore.ieee.org/document/8358703/
UR - http://www.scopus.com/inward/record.url?scp=85046781956&partnerID=8YFLogxK
U2 - 10.1109/JPHOT.2018.2835562
DO - 10.1109/JPHOT.2018.2835562
M3 - Article
AN - SCOPUS:85046781956
SN - 1943-0655
VL - 10
SP - 1
EP - 13
JO - IEEE Photonics Journal
JF - IEEE Photonics Journal
IS - 3
ER -