TY - JOUR
T1 - Sedimentary records of past earthquakes in Boraboy Lake during the last ca 600 years (North Anatolian Fault, Turkey)
AU - Avsar, Ulas
AU - Hubert-Ferrari, Aurélia
AU - De Batist, Marc
AU - Schmidt, Sabine
AU - Fagel, Nathalie
N1 - KAUST Repository Item: Exported on 2020-10-01
PY - 2015/5/21
Y1 - 2015/5/21
N2 - Multiproxy sedimentological analyses along 4.9 m-long sequence of Boraboy Lake, which is located on the central eastern part of the North Anatolian Fault (NAF), reveal the sedimentary traces of past large earthquakes in the region. The lake has a relatively large catchment area (10 km2) compared to its size (0.12 km2), which renders sedimentation sensitive to heavy rain/storm events. Accordingly, the background sedimentation, which is composed of faintly laminated reddish/yellowish brown clayey silt, is frequently interrupted by organic-rich intercalations probably due to heavy rain/storm events transporting terrestrial plant remains from the densely vegetated catchment. In addition to frequent organic-rich intercalations, the background sedimentation is interrupted by four mass-wasting deposits (MWD) of which thickness range between 15 and 50 cm. High-resolution ITRAX μXRF data confirms higher homogeneity along the MWDs (E1-E4) compared to the background sedimentation. Based on 137Cs and 210Pbxs dating and radiocarbon chronology, three MWDs detected in Boraboy sequence (E2, E3 and E4) temporally correlate with large historical earthquakes along the NAF; the 1943 Tosya (Ms= 7.6) and/or 1942 Niksar-Erbaa (Ms= 7.1), the 1776 Amasya-Merzifon and the 1668 North Anatolian (Ms= 7.9) earthquakes. The youngest MWD in the sequence (E1), which is dated to early 2000s, does not correlate with any strong earthquake in the region. This MWD was probably a single mass-wasting event due to routine overloading and oversteepening on the delta front formed by the main inlet of the lake. In subaqueous paleoseismology, coevality of multi-location mass-wasting events is used as a criterion to assign a seismic triggering mechanism, and to rule out mass-wasting events due to routine overloading/oversteepening of subaqueous slopes. Within this context, Boraboy sequence provides a valuable example to discuss sedimentological imprints of single- vs. multi-source MWDs.
AB - Multiproxy sedimentological analyses along 4.9 m-long sequence of Boraboy Lake, which is located on the central eastern part of the North Anatolian Fault (NAF), reveal the sedimentary traces of past large earthquakes in the region. The lake has a relatively large catchment area (10 km2) compared to its size (0.12 km2), which renders sedimentation sensitive to heavy rain/storm events. Accordingly, the background sedimentation, which is composed of faintly laminated reddish/yellowish brown clayey silt, is frequently interrupted by organic-rich intercalations probably due to heavy rain/storm events transporting terrestrial plant remains from the densely vegetated catchment. In addition to frequent organic-rich intercalations, the background sedimentation is interrupted by four mass-wasting deposits (MWD) of which thickness range between 15 and 50 cm. High-resolution ITRAX μXRF data confirms higher homogeneity along the MWDs (E1-E4) compared to the background sedimentation. Based on 137Cs and 210Pbxs dating and radiocarbon chronology, three MWDs detected in Boraboy sequence (E2, E3 and E4) temporally correlate with large historical earthquakes along the NAF; the 1943 Tosya (Ms= 7.6) and/or 1942 Niksar-Erbaa (Ms= 7.1), the 1776 Amasya-Merzifon and the 1668 North Anatolian (Ms= 7.9) earthquakes. The youngest MWD in the sequence (E1), which is dated to early 2000s, does not correlate with any strong earthquake in the region. This MWD was probably a single mass-wasting event due to routine overloading and oversteepening on the delta front formed by the main inlet of the lake. In subaqueous paleoseismology, coevality of multi-location mass-wasting events is used as a criterion to assign a seismic triggering mechanism, and to rule out mass-wasting events due to routine overloading/oversteepening of subaqueous slopes. Within this context, Boraboy sequence provides a valuable example to discuss sedimentological imprints of single- vs. multi-source MWDs.
UR - http://hdl.handle.net/10754/555640
UR - http://linkinghub.elsevier.com/retrieve/pii/S0031018215002436
UR - http://www.scopus.com/inward/record.url?scp=84930201495&partnerID=8YFLogxK
U2 - 10.1016/j.palaeo.2015.04.031
DO - 10.1016/j.palaeo.2015.04.031
M3 - Article
SN - 0031-0182
VL - 433
SP - 1
EP - 9
JO - Palaeogeography, Palaeoclimatology, Palaeoecology
JF - Palaeogeography, Palaeoclimatology, Palaeoecology
ER -