TY - JOUR
T1 - Seismicity Associated With the Formation of a New Island in the Southern Red Sea
AU - Eyles, Jade H. W.
AU - Illsley-Kemp, Finnigan
AU - Keir, Derek
AU - Ruch, Joel
AU - Jonsson, Sigurjon
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: Funding: FI-K was funded through NERC studentship NE/L002531/1 and a grant to GSNOCS from Roy Franklin O.B.E and the ECLIPSE Program funded by the New Zealand Ministry of Business, Innovation and Employment. DK was supported by NERC grant NE/L013932, and grant number OSR-2015-CRG4-2643 from King Abdullah University of Science and Technology. JE was supported by NERC studentship NE/L002582/1. Acknowledgments: We acknowledge the support of Martin Mai (KAUST) in facilitating acquisition of data from Farasan Island from the Saudi Geological Survey, who are also thanked. The remaining data was downloaded from the IRIS-DMC. We thank the reviewers EF and LDS, editor BT, and chief editor Valerio Acocella for constructive reviews.
PY - 2018/9/24
Y1 - 2018/9/24
N2 - Volcanic eruptions at mid-ocean ridges are rarely witnessed due to their inaccessibility, and are therefore poorly understood. Shallow waters in the Red Sea allow the study of ocean ridge related volcanism observed close to sea level. On the 18th December 2011, Yemeni fishermen witnessed a volcanic eruption in the Southern Red Sea that led to the formation of Sholan Island. Previous research efforts to constrain the dynamics of the intrusion and subsequent eruption relied primarily on interferometric synthetic aperture radar (InSAR) methods, data for which were relatively sparse. Our study integrates InSAR analysis with seismic data from Eritrea, Yemen, and Saudi Arabia to provide additional insights into the transport of magma in the crust that fed the eruption. Twenty-three earthquakes of magnitude 2.1–3.9 were located using the Oct-tree sampling algorithm. The earthquakes propagated southeastward from near Sholan Island, mainly between December 12th and December 13th. The seismicity is interpreted as being induced by emplacement of a ∼12 km-long dike. Earthquake focal mechanisms are primarily normal faulting and suggest the seismicity was caused through a combination of dike propagation and inflation. We combine these observations with new deformation modeling to constrain the location and orientation of the dike. The best-fit dike orientation that satisfies both geodetic and seismic data is NNW-SSE, parallel to the overall strike of the Red Sea. Further, the timing of the seismicity suggests the volcanic activity began as a submarine eruption on the 13th December, which became a subaerial eruption on the 18th December when the island emerged from the beneath the sea. The new intrusion and eruption along the ridge suggests seafloor spreading is active in this region.
AB - Volcanic eruptions at mid-ocean ridges are rarely witnessed due to their inaccessibility, and are therefore poorly understood. Shallow waters in the Red Sea allow the study of ocean ridge related volcanism observed close to sea level. On the 18th December 2011, Yemeni fishermen witnessed a volcanic eruption in the Southern Red Sea that led to the formation of Sholan Island. Previous research efforts to constrain the dynamics of the intrusion and subsequent eruption relied primarily on interferometric synthetic aperture radar (InSAR) methods, data for which were relatively sparse. Our study integrates InSAR analysis with seismic data from Eritrea, Yemen, and Saudi Arabia to provide additional insights into the transport of magma in the crust that fed the eruption. Twenty-three earthquakes of magnitude 2.1–3.9 were located using the Oct-tree sampling algorithm. The earthquakes propagated southeastward from near Sholan Island, mainly between December 12th and December 13th. The seismicity is interpreted as being induced by emplacement of a ∼12 km-long dike. Earthquake focal mechanisms are primarily normal faulting and suggest the seismicity was caused through a combination of dike propagation and inflation. We combine these observations with new deformation modeling to constrain the location and orientation of the dike. The best-fit dike orientation that satisfies both geodetic and seismic data is NNW-SSE, parallel to the overall strike of the Red Sea. Further, the timing of the seismicity suggests the volcanic activity began as a submarine eruption on the 13th December, which became a subaerial eruption on the 18th December when the island emerged from the beneath the sea. The new intrusion and eruption along the ridge suggests seafloor spreading is active in this region.
UR - http://hdl.handle.net/10754/628788
UR - https://www.frontiersin.org/articles/10.3389/feart.2018.00141/full
UR - http://www.scopus.com/inward/record.url?scp=85054810653&partnerID=8YFLogxK
U2 - 10.3389/feart.2018.00141
DO - 10.3389/feart.2018.00141
M3 - Article
SN - 2296-6463
VL - 6
JO - Frontiers in Earth Science
JF - Frontiers in Earth Science
ER -