Abstract
Design ground motions are typically governed by large earthquakes at close distances, but the increasing number of near-field recordings manifest the large variability in near-source ground-motion amplitudes which result in significant differences in the building response. In the near-field, this variability arises mainly from sourcedirectivity effects, which generate strong near-fault velocity pulses. We investigate the effect of source complexity on the generation of velocity pulses using a geometrical approach to quantify directivity at near-fault sites based on kinematic rupture models. We propose selection algorithms that can be implemented as search strategies for directivity-related strong ground motion records which may serve as ground motion selection tools in large databases for structural analysis and liquefaction studies. We find that the existence of directivity pulses is strongly related to slip heterogeneity on the fault plane, i.e. that the location and size of asperities (large slip areas) determine directivity pulse generation. In this context we quantify several pulse properties, testing a variety of approaches, and develop predictive relationships between a number of source parameters and pulse properties. We find strong dependence of pulse period on total area of asperities, as well as on a geometrical directivity parameter. The empirical observations on velocity pulse generation determined by the proposed selection procedure are compared with the predictions using the geometrical directivity model. The results are important for determining the probability of observing a pulse at a site as a function of magnitude, distance, and slip heterogeneity on the fault plane.
Original language | English (US) |
---|---|
Pages (from-to) | 25-43 |
Number of pages | 19 |
Journal | Georisk |
Volume | 5 |
Issue number | 1 |
DOIs | |
State | Published - Mar 2011 |
Keywords
- Ground motion variability
- Rupture directivity
- Source effects
- Velocity pulses
ASJC Scopus subject areas
- Safety, Risk, Reliability and Quality
- Geology
- Geotechnical Engineering and Engineering Geology
- Building and Construction
- Civil and Structural Engineering