TY - JOUR
T1 - Selective postsynaptic co-localization of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking
AU - Bergersen, Linda Hildegard
AU - Magistretti, Pierre J.
AU - Pellerin, Luc
N1 - Funding Information:
L.H.B. was the recipient of a postdoctoral fellowship from the Norwegian Medical Research Council. This work was supported by grant no. 3100A0-100679 from Swiss Fonds National de la Recherche Scientifique to L.P.
PY - 2005/4
Y1 - 2005/4
N2 - MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, in the stratum radiatum of both rat hippocampal CA1 and CA3 regions, as well as at parallel fibre-Purkinje cell synapses in mouse cerebellum. MCT2 levels were significantly lower at mossy fibre synapses on CA3 neurons, and MCT2 was almost absent from symmetric synapses on CA1 pyramidal cells. It could also be demonstrated using quantitative double-labeling immunogold cytochemistry that MCT2 and AMPA receptor GluR2/ 3 subunits have a similar postsynaptic distribution at asymmetric synapses with high levels expressed within the postsynaptic density. In addition, as for AMPA receptors, a significant proportion of MCT2 is located on vesicular membranes within the postsynaptic spine, forming an intracellular pool available for a putative postsynaptic endo/exocytotic trafficking at these excitatory synapses. Altogether, the data presented provide evidence for MCT2 expression in the postsynaptic density area at specific subsets of glutamatergic synapses, and also suggest that MCT2, like AMPA receptors, could undergo membrane trafficking.
AB - MCT2 is the main neuronal monocarboxylate transporter needed by neurons if they are to use lactate as an additional energy substrate. Previous evidence suggested that some MCT2 could be located in postsynaptic elements of glutamatergic synapses. Using post-embedding electron microscopic immunocytochemistry, it is demonstrated that MCT2 is present at postsynaptic density of asymmetric synapses, in the stratum radiatum of both rat hippocampal CA1 and CA3 regions, as well as at parallel fibre-Purkinje cell synapses in mouse cerebellum. MCT2 levels were significantly lower at mossy fibre synapses on CA3 neurons, and MCT2 was almost absent from symmetric synapses on CA1 pyramidal cells. It could also be demonstrated using quantitative double-labeling immunogold cytochemistry that MCT2 and AMPA receptor GluR2/ 3 subunits have a similar postsynaptic distribution at asymmetric synapses with high levels expressed within the postsynaptic density. In addition, as for AMPA receptors, a significant proportion of MCT2 is located on vesicular membranes within the postsynaptic spine, forming an intracellular pool available for a putative postsynaptic endo/exocytotic trafficking at these excitatory synapses. Altogether, the data presented provide evidence for MCT2 expression in the postsynaptic density area at specific subsets of glutamatergic synapses, and also suggest that MCT2, like AMPA receptors, could undergo membrane trafficking.
KW - Energy metabolism
KW - Lactate
KW - Monocarboxylate transporter
KW - Postsynaptic density
KW - Synaptic plasticity
UR - http://www.scopus.com/inward/record.url?scp=15244358180&partnerID=8YFLogxK
U2 - 10.1093/cercor/bhh138
DO - 10.1093/cercor/bhh138
M3 - Article
C2 - 15749979
AN - SCOPUS:15244358180
SN - 1047-3211
VL - 15
SP - 361
EP - 370
JO - Cerebral Cortex
JF - Cerebral Cortex
IS - 4
ER -