TY - JOUR
T1 - Self-Assembled Complexes of Horseradish Peroxidase with Magnetic Nanoparticles Showing Enhanced Peroxidase Activity
AU - Corgié, Stéphane C.
AU - Kahawong, Patarawan
AU - Duan, Xiaonan
AU - Bowser, Daniel
AU - Edward, Joseph B.
AU - Walker, Larry P.
AU - Giannelis, Emmanuel P.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-C1-018-02
Acknowledgements: P.K. gratefully acknowledges the support of a Thai government scholarship. This publication is based on work supported in part by Award No KUS-C1-018-02, made by King Abdullah University of Science and Technology (KAUST) and the US Department of Transportation under contract to the Northeast Sun Grant Initiative at Cornell University (US DOT Assistance #DTOS59-07-G-00052). This work made use of the Cornell Center for Materials Research Facilities supported by the National Science Foundation under Award Number DMR-0520404. The authors acknowledge the Nanobiotechnology Center (NBTC) and the Biofuels Research Laboratory (BRL) at Cornell University, Ithaca, NY, USA.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/2/15
Y1 - 2012/2/15
N2 - Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AB - Bio-nanocatalysts (BNCs) consisting of horseradish peroxidase (HRP) self-assembled with magnetic nanoparticles (MNPs) enhance enzymatic activity due to the faster turnover and lower inhibition of the enzyme. The size and magnetization of the MNPs affect the formation of the BNCs, and ultimately control the activity of the bound enzymes. Smaller MNPs form small clusters with a low affinity for the HRP. While the turnover for the bound fraction is drastically increased, there is no difference in the H 2O 2 inhibitory concentration. Larger MNPs with a higher magnetization aggregate in larger clusters and have a higher affinity for the enzyme and a lower substrate inhibition. All of the BNCs are more active than the free enzyme or the MNPs (BNCs > HRP ≤laquo; MNPs). Since the BNCs show surprising resilience in various reaction conditions, they may pave the way towards new hybrid biocatalysts with increased activities and unique catalytic properties for magnetosensitive enzymatic reactions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UR - http://hdl.handle.net/10754/599574
UR - http://doi.wiley.com/10.1002/adfm.201102398
UR - http://www.scopus.com/inward/record.url?scp=84860752905&partnerID=8YFLogxK
U2 - 10.1002/adfm.201102398
DO - 10.1002/adfm.201102398
M3 - Article
SN - 1616-301X
VL - 22
SP - 1940
EP - 1951
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 9
ER -