TY - JOUR
T1 - Series Assembly of Microbial Desalination Cells Containing Stacked Electrodialysis Cells for Partial or Complete Seawater Desalination
AU - Kim, Younggy
AU - Logan, Bruce E.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-I1-003-13
Acknowledgements: This research was supported by funding through the King Abdullah University of Science and Technology (KAUST) (Award KUS-I1-003-13).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2011/7
Y1 - 2011/7
N2 - A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.
AB - A microbial desalination cell (MDC) is a new approach for desalinating water based on using the electrical current generated by exoelectrogenic bacteria. Previously developed MDCs have used only one or two desalination chambers with substantial internal resistance, and used low salinity catholytes containing a buffered or acid solution. Here we show that substantially improved MDC performance can be obtained even with a nonbuffered, saline catholyte, by using an electrodialysis stack consisting of 5 pairs of desalting and concentrating cells. When 4 stacked MDCs were used in series (20 total pairs of desalination chambers), the salinity of 0.06 L of synthetic seawater (35 g/L NaCl) was reduced by 44% using 0.12 L of anode solution (2:1). The resistive loss in the electrodialysis stack was negligible due to minimization of the intermembrane distances, and therefore the power densities produced by the MDC were similar to those produced by single chamber microbial fuel cells (MFCs) lacking desalination chambers. The observed current efficiency was 86%, indicating separation of 4.3 pairs of sodium and chloride ions for every electron transferred through the circuit. With two additional stages (total of 3.8 L of anolyte), desalination was increased to 98% salt removal, producing 0.3 L of fresh water (12.6:1). These results demonstrate that stacked MDCs can be used for efficient desalination of seawater while at the same time achieving power densities comparable to those obtained in MFCs. © 2011 American Chemical Society.
UR - http://hdl.handle.net/10754/599604
UR - https://pubs.acs.org/doi/10.1021/es200584q
UR - http://www.scopus.com/inward/record.url?scp=79959903351&partnerID=8YFLogxK
U2 - 10.1021/es200584q
DO - 10.1021/es200584q
M3 - Article
C2 - 21671676
SN - 0013-936X
VL - 45
SP - 5840
EP - 5845
JO - Environmental Science & Technology
JF - Environmental Science & Technology
IS - 13
ER -