Sex and time specific parental effects of warming on reproduction and offspring quality in a coral reef fish.

Rachel K. Spinks, Lucrezia C. Bonzi, Timothy Ravasi, Philip L. Munday, Jennifer M. Donelson

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Global warming can disrupt reproduction or lead to fewer and poorer quality offspring, owing to the thermally sensitive nature of reproductive physiology. However, phenotypic plasticity may enable some animals to adjust the thermal sensitivity of reproduction to maintain performance in warmer conditions. Whether elevated temperature affects reproduction may depend on the timing of exposure to warming and the sex of the parent exposed. We exposed male and female coral reef damselfish (Acanthochromis polyacanthus) during development, reproduction, or both life-stages to an elevated temperature (+1.5°C) consistent with projected ocean warming and measured reproductive output and newly hatched offspring performance relative to pairs reared in a present-day control temperature. We found female development in elevated temperature increased the probability of breeding, but reproduction ceased if warming continued to the reproductive stage, irrespective of the male’s developmental experience. Females that developed in warmer conditions, but reproduced in control conditions, also produced larger eggs and hatchlings with greater yolk reserves. By contrast, male development or pairs reproducing in higher temperature produced fewer and poorer quality offspring. Such changes may be due to alterations in sex hormones or an endocrine stress response. In nature, this could mean female fish developing during a marine heatwave may have enhanced reproduction and produce higher quality offspring compared to females developing in a year of usual thermal conditions. However, male development during a heatwave would likely result in reduced reproductive output. Furthermore, the lack of reproduction from an average increase in temperature could lead to population decline. Our results demonstrate how the timing of exposure differentially influences females and males and how this translates to effects on reproduction and population sustainability in a warming world.
Original languageEnglish (US)
JournalEvolutionary Applications
DOIs
StatePublished - Dec 18 2020

Fingerprint

Dive into the research topics of 'Sex and time specific parental effects of warming on reproduction and offspring quality in a coral reef fish.'. Together they form a unique fingerprint.

Cite this