Abstract
We consider the adiabatic shearing of an incompressible non-Newtonian liquid with temperature dependent viscosity, subjected to steady shearing of the boundary. Identical equations govern the plastic shearing of a solid exhibiting thermal softening and strain rate sensitivity with constitutive relation obeying a certain power law. We establish that every classical solution approaches a uniform shearing solution as t yields plus infinity at specific rates of convergence. Therefore, no shear bands formation is predicted for materials of this type.
Original language | English (US) |
---|---|
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | QUARTERLY OF APPLIED MATHEMATICS |
Volume | 44 |
Issue number | 1 |
DOIs | |
State | Published - 1986 |
Externally published | Yes |
ASJC Scopus subject areas
- Applied Mathematics