TY - JOUR
T1 - Shock Tube/Laser Absorption Measurements of the High-Temperature Spectra and Decomposition of Propyl Ethers.
AU - Adil, Mohammad
AU - Farooq, Aamir
N1 - KAUST Repository Item: Exported on 2023-09-13
Acknowledgements: This work was funded by King Abdullah University of Science and Technology (KAUST). ChatGPT was used to correct sentence structure and grammar.
PY - 2023/9/10
Y1 - 2023/9/10
N2 - This work presents measurements of temperature-dependent absorption spectra and thermal decomposition rates of propyl ethers, specifically di-n-propyl ether (DnPE) and diisopropyl ether (DiPE), which are two renewable fuel candidates. We employed a broadband rapid-tuning MIRcat-QT laser, operating in the scan/fixed-wavelength mode in combination with a shock tube. Spectral measurements were performed over the wavelength range of 8.4–11 μm (909.1–1190.5 cm–1), covering the strongest infrared absorption bands of the studied ethers, at temperatures of 559–853 K and pressure near 1 bar. These high-temperature spectra help in selecting the optimum wavelength for sensitive and selective measurements of the target ethers. Based on the criteria of high sensitivity, minimum interference, and insensitivity to temperature and pressure variations, we selected a wavelength of 1121.82 cm–1 for high-temperature diagnostics of DnPE and DiPE. Absorption cross sections at the selected wavelength of 1121.82 cm–1 were measured over 550–1500 K, and pressures ranging from 0.3–1.4 bar. This diagnostic was then applied to study the high-temperature pyrolysis of these ethers by measuring their time histories behind the reflected shock waves. Our experimentally measured overall decomposition rate coefficients for DnPE and DiPE are given as (unit of s–1) kDnPE = 1.25 × 1027 × T–3.483 × exp(−37620 K/T) and kDiPE = 5.26 × 1023 × T–2.857 × exp(−32360 K/T).
AB - This work presents measurements of temperature-dependent absorption spectra and thermal decomposition rates of propyl ethers, specifically di-n-propyl ether (DnPE) and diisopropyl ether (DiPE), which are two renewable fuel candidates. We employed a broadband rapid-tuning MIRcat-QT laser, operating in the scan/fixed-wavelength mode in combination with a shock tube. Spectral measurements were performed over the wavelength range of 8.4–11 μm (909.1–1190.5 cm–1), covering the strongest infrared absorption bands of the studied ethers, at temperatures of 559–853 K and pressure near 1 bar. These high-temperature spectra help in selecting the optimum wavelength for sensitive and selective measurements of the target ethers. Based on the criteria of high sensitivity, minimum interference, and insensitivity to temperature and pressure variations, we selected a wavelength of 1121.82 cm–1 for high-temperature diagnostics of DnPE and DiPE. Absorption cross sections at the selected wavelength of 1121.82 cm–1 were measured over 550–1500 K, and pressures ranging from 0.3–1.4 bar. This diagnostic was then applied to study the high-temperature pyrolysis of these ethers by measuring their time histories behind the reflected shock waves. Our experimentally measured overall decomposition rate coefficients for DnPE and DiPE are given as (unit of s–1) kDnPE = 1.25 × 1027 × T–3.483 × exp(−37620 K/T) and kDiPE = 5.26 × 1023 × T–2.857 × exp(−32360 K/T).
UR - http://hdl.handle.net/10754/694395
UR - https://pubs.acs.org/doi/10.1021/acs.jpca.3c04446
U2 - 10.1021/acs.jpca.3c04446
DO - 10.1021/acs.jpca.3c04446
M3 - Article
C2 - 37691256
SN - 1089-5639
JO - The journal of physical chemistry. A
JF - The journal of physical chemistry. A
ER -