TY - JOUR
T1 - Signal recovery and system calibration from multiple compressive poisson measurements
AU - Wang, Liming
AU - Huang, Jiaji
AU - Yuan, Xin
AU - Krishnamurthy, Kalyani
AU - Greenberg, Joel
AU - Cevher, Volkan
AU - Rodrigues, Miguel R.D.
AU - Brady, David
AU - Calderbank, Robert
AU - Carin, Lawrence
N1 - Generated from Scopus record by KAUST IRTS on 2021-02-09
PY - 2015/9/17
Y1 - 2015/9/17
N2 - The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are established based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.
AB - The measurement matrix employed in compressive sensing typically cannot be known precisely a priori and must be estimated via calibration. One may take multiple compressive measurements, from which the measurement matrix and underlying signals may be estimated jointly. This is of interest as well when the measurement matrix may change as a function of the details of what is measured. This problem has been considered recently for Gaussian measurement noise, and here we develop this idea with application to Poisson systems. A collaborative maximum likelihood algorithm and alternating proximal gradient algorithm are proposed, and associated theoretical performance guarantees are established based on newly derived concentration-of-measure results. A Bayesian model is then introduced, to improve flexibility and generality. Connections between the maximum likelihood methods and the Bayesian model are developed, and example results are presented for a real compressive X-ray imaging system.
UR - http://epubs.siam.org/doi/10.1137/140998779
UR - http://www.scopus.com/inward/record.url?scp=84943514803&partnerID=8YFLogxK
U2 - 10.1137/140998779
DO - 10.1137/140998779
M3 - Article
SN - 1936-4954
VL - 8
SP - 1923
EP - 1954
JO - SIAM Journal on Imaging Sciences
JF - SIAM Journal on Imaging Sciences
IS - 3
ER -