Significant stability enhancement in high-efficiency polymer: Fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light

Jaehoon Jeong, Jooyeok Seo, Sungho Nam, Hyemi Han, Hwajeong Kim*, Thomas D. Anthopoulos, Donal D.C. Bradley, Youngkyoo Kim

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophenealt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl- C71-butyric acid methyl ester (PC71BM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PC71BM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF. The poor device stability without UCF is ascribed to the oxidative degradation of constituent materials in the BHJ layers, which give rise to the formation of PC71BM aggregates, as measured with high resolution and scanning transmission electron microscopy and X-ray photoelectron spectroscopy. The device stability cannot be improved by simply inserting poly(ethylene imine) (PEI) interfacial layer without UCF, whereas the lifetime of the PEI-inserted PTB7-Th:PC71BM solar cells is significantly enhanced when UCF is attached.

Original languageEnglish (US)
Article number1500269
JournalAdvanced Science
Volume3
Issue number4
DOIs
StatePublished - Apr 2016
Externally publishedYes

ASJC Scopus subject areas

  • Medicine (miscellaneous)
  • General Chemical Engineering
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Materials Science
  • General Engineering
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Significant stability enhancement in high-efficiency polymer: Fullerene bulk heterojunction solar cells by blocking ultraviolet photons from solar light'. Together they form a unique fingerprint.

Cite this