TY - JOUR
T1 - Silica-supported catalyst for the synthesis of low entangled UHMWPE suitable for solid-state processing
AU - Yang, Huaqin
AU - Lolage, Sanjay
AU - van der Eem, Joris
AU - Rastogi, Sanjay
AU - Romano, Dario
N1 - Publisher Copyright:
© 2023 Elsevier B.V.
PY - 2024/1
Y1 - 2024/1
N2 - Different types of silica (mesoporous, spherical and nano-size particles), pre-activated with methylaluminoxane (MAO), are used to activate and support the bis[N-(3‑tert-butylsalicydene)-2,3,4,5,6-pentafluoroanilinato] titanium(IV) dichloride (FI) complex with the aim to synthesize low-entangled UHMWPE having controlled particle morphology. Through the porosity analysis, nitrogen adsorption and desorption isotherms, a decreased surfaced area of the chosen silica is observed when supported by MAO. From the bonding energy study by XPS, the bonding energy difference of Si and O, between the nano-size silica and in the MAO-nano silica, suggests the formation of Al-O-Si after chemical activation with MAO. Using elementary analysis, ICP-OES and XPS characterization, the aluminum content grafted on the silica surface is found to match with the anticipated amount of MAO on the MAO-Silica/FI catalytic system, indicating a stable grafting after catalyst supporting. From the rheological studies of the polymers, coupled with DSC results using an isothermal crystallization protocol, the resultant entangled state in the semi-crystalline polymers is estimated. The observations are that the entangled state achieved during polymerization from the investigated heterogeneous catalytic systems, is the lowest in PE-MAO-nano silica/FI, increases in PE-MAO-mesoporous silica/FI and is highest in PE-MAO-spherical silica/FI. Silica modification using two different silanes shows significant influence on the catalytic activity, giving lower polymer yield in MAO-modified-mesoporous silica and MAO-modified-nano silica compared to the unmodified MAO-silica. Whereas, no significant spatial effect is observed in the formation of chain entanglement, showing the increased entanglement density of the nascent polymers. By employing heterogeneous catalytic systems, reactor fouling and wall sheeting problems are resolved and the polymers show good morphology replication of the support. The UHMWPE synthesized using the nano silica as support, having the lowest entangled state and loosely packed crystals, can be uniaxially processed in the solid-state to a thin tape having thickness around 34 μm, showing maximum tensile strength of 3.26 N/tex and tensile modulus of 170 N/tex.
AB - Different types of silica (mesoporous, spherical and nano-size particles), pre-activated with methylaluminoxane (MAO), are used to activate and support the bis[N-(3‑tert-butylsalicydene)-2,3,4,5,6-pentafluoroanilinato] titanium(IV) dichloride (FI) complex with the aim to synthesize low-entangled UHMWPE having controlled particle morphology. Through the porosity analysis, nitrogen adsorption and desorption isotherms, a decreased surfaced area of the chosen silica is observed when supported by MAO. From the bonding energy study by XPS, the bonding energy difference of Si and O, between the nano-size silica and in the MAO-nano silica, suggests the formation of Al-O-Si after chemical activation with MAO. Using elementary analysis, ICP-OES and XPS characterization, the aluminum content grafted on the silica surface is found to match with the anticipated amount of MAO on the MAO-Silica/FI catalytic system, indicating a stable grafting after catalyst supporting. From the rheological studies of the polymers, coupled with DSC results using an isothermal crystallization protocol, the resultant entangled state in the semi-crystalline polymers is estimated. The observations are that the entangled state achieved during polymerization from the investigated heterogeneous catalytic systems, is the lowest in PE-MAO-nano silica/FI, increases in PE-MAO-mesoporous silica/FI and is highest in PE-MAO-spherical silica/FI. Silica modification using two different silanes shows significant influence on the catalytic activity, giving lower polymer yield in MAO-modified-mesoporous silica and MAO-modified-nano silica compared to the unmodified MAO-silica. Whereas, no significant spatial effect is observed in the formation of chain entanglement, showing the increased entanglement density of the nascent polymers. By employing heterogeneous catalytic systems, reactor fouling and wall sheeting problems are resolved and the polymers show good morphology replication of the support. The UHMWPE synthesized using the nano silica as support, having the lowest entangled state and loosely packed crystals, can be uniaxially processed in the solid-state to a thin tape having thickness around 34 μm, showing maximum tensile strength of 3.26 N/tex and tensile modulus of 170 N/tex.
KW - Entanglement
KW - FI catalyst
KW - Heterogeneous
KW - Supporting
KW - UHMWPE
UR - http://www.scopus.com/inward/record.url?scp=85181668734&partnerID=8YFLogxK
U2 - 10.1016/j.mcat.2023.113668
DO - 10.1016/j.mcat.2023.113668
M3 - Article
AN - SCOPUS:85181668734
SN - 2468-8231
VL - 552
JO - Molecular Catalysis
JF - Molecular Catalysis
M1 - 113668
ER -