TY - JOUR
T1 - Simultaneous Detection and Mutation Surveillance of SARS-CoV-2 and co-infections of multiple respiratory viruses by Rapid field-deployable sequencing.
AU - Bi, Chongwei
AU - Ramos Mandujano, Gerardo
AU - Tian, Yeteng
AU - Hala, Sharif
AU - Xu, Jinna
AU - Mfarrej, Sara
AU - Esteban, Concepcion Rodriguez
AU - Delicado, Estrella Nuñez
AU - Alofi, Fadwa S
AU - Khogeer, Asim
AU - Hashem, Anwar M
AU - Almontashiri, Naif A M
AU - Pain, Arnab
AU - Izpisua Belmonte, Juan Carlos
AU - Li, Mo
N1 - KAUST Repository Item: Exported on 2021-04-19
PY - 2021/4/6
Y1 - 2021/4/6
N2 - BackgroundStrategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly-specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner.MethodsWe describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed NIRVANA. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus, and monitor mutations for up to 96 samples in real-time.FindingsNIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per μl of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2 positive samples mirror the epidemiology of COVID-19. Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and PMMoV (an omnipresent virus and water quality indicator) in municipal wastewater samples.ConclusionsNIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.FundingM.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01, M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).
AB - BackgroundStrategies for monitoring the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are crucial for combating the pandemic. Detection and mutation surveillance of SARS-CoV-2 and other respiratory viruses require separate and complex workflows that rely on highly-specialized facilities, personnel, and reagents. To date, no method can rapidly diagnose multiple viral infections and determine variants in a high-throughput manner.MethodsWe describe a method for multiplex isothermal amplification-based sequencing and real-time analysis of multiple viral genomes, termed NIRVANA. It can simultaneously detect SARS-CoV-2, influenza A, human adenovirus, and human coronavirus, and monitor mutations for up to 96 samples in real-time.FindingsNIRVANA showed high sensitivity and specificity for SARS-CoV-2 in 70 clinical samples with a detection limit of 20 viral RNA copies per μl of extracted nucleic acid. It also detected the influenza A co-infection in two samples. The variant analysis results of SARS-CoV-2 positive samples mirror the epidemiology of COVID-19. Additionally, NIRVANA could simultaneously detect SARS-CoV-2 and PMMoV (an omnipresent virus and water quality indicator) in municipal wastewater samples.ConclusionsNIRVANA provides high-confidence detection of both SARS-CoV-2 and other respiratory viruses and mutation surveillance of SARS-CoV-2 on the fly. We expect it to offer a promising solution for rapid field-deployable detection and mutational surveillance of pandemic viruses.FundingM.L. is supported by KAUST Office of Sponsored Research (BAS/1/1080-01). This work is supported by KAUST Competitive Research Grant (URF/1/3412-01-01, M.L. and J.C.I.B.) and Universidad Catolica San Antonio de Murcia (J.C.I.B.). A.M.H. is supported by Saudi Ministry of Education (project 436).
UR - http://hdl.handle.net/10754/668596
UR - https://linkinghub.elsevier.com/retrieve/pii/S2666634021001173
U2 - 10.1016/j.medj.2021.03.015
DO - 10.1016/j.medj.2021.03.015
M3 - Article
C2 - 33821249
SN - 2666-6359
JO - Med (New York, N.Y.)
JF - Med (New York, N.Y.)
ER -