TY - JOUR
T1 - Simultaneous planar laser-induced fluorescence measurement of reactant NH3, radical NH, and pollutant NO in ammonia-hydrogen flames using a single dye laser
AU - Wang, Guoqing
AU - Wang, Shixing
AU - Guiberti, Thibault
N1 - KAUST Repository Item: Exported on 2023-08-04
Acknowledged KAUST grant number(s): BAS/1/1425-01-01
Acknowledgements: This research was supported by funding from King Abdullah University of Science and Technology (KAUST) (BAS/1/1425-01-01).
PY - 2023/8/1
Y1 - 2023/8/1
N2 - The stability, local extinction, and NOx production of ammonia-hydrogen (NH3-H2) flames are significantly impacted by turbulence-chemistry interactions. A powerful technique to study these interactions is planar laser-induced fluorescence (PLIF). However, multi-scalar PLIF typically requires complex and expensive systems, with multiple laser sources. This study proposes a novel PLIF technique using a single dye laser to perform simultaneous, single-shot imaging of the reactant NH3, radical NH, and pollutant NO in NH3-H2 flames. According to the excitation scans and the emission spectra of NH3, NH, and NO, three wavelength couples can be used to image the three species simultaneously via two-photon excitation of NH3 C’ − X (2,0), single-photon excitation of NH A3−X3− (0,0) near 304 nm, and single-photon excitation of NO A2+−X2 (0,1) near 237 nm. Wavelengths near 237 nm and 304 nm are obtained simultaneously with only one dye laser by combining outputs of the frequency-doubling and frequency mixing units. NH3-, NH-, and NO-PLIF imaging performance is analyzed by quantifying the signal-to-noise ratios and detection limits. This technique is then used to visualize the structure of premixed and non-premixed flames over wide ranges of NH3 and H2 concentrations in the fuel blend. Results show that the premixed NH3-H2 flames have a compact structure, while the non-premixed flames exhibit a large gap between NH3- and NH-PLIF layers, where ammonia undergoes significant decomposition before reaching the reaction layer. The inner edge of the NO-PLIF layer overlaps well with the reaction layer represented by the NH-PLIF layer in all flames. The fully developed turbulent structure downstream of the NH3-H2 flame causes pinching-off of the premixed flame front and local extinction of the diffusion flame front.
AB - The stability, local extinction, and NOx production of ammonia-hydrogen (NH3-H2) flames are significantly impacted by turbulence-chemistry interactions. A powerful technique to study these interactions is planar laser-induced fluorescence (PLIF). However, multi-scalar PLIF typically requires complex and expensive systems, with multiple laser sources. This study proposes a novel PLIF technique using a single dye laser to perform simultaneous, single-shot imaging of the reactant NH3, radical NH, and pollutant NO in NH3-H2 flames. According to the excitation scans and the emission spectra of NH3, NH, and NO, three wavelength couples can be used to image the three species simultaneously via two-photon excitation of NH3 C’ − X (2,0), single-photon excitation of NH A3−X3− (0,0) near 304 nm, and single-photon excitation of NO A2+−X2 (0,1) near 237 nm. Wavelengths near 237 nm and 304 nm are obtained simultaneously with only one dye laser by combining outputs of the frequency-doubling and frequency mixing units. NH3-, NH-, and NO-PLIF imaging performance is analyzed by quantifying the signal-to-noise ratios and detection limits. This technique is then used to visualize the structure of premixed and non-premixed flames over wide ranges of NH3 and H2 concentrations in the fuel blend. Results show that the premixed NH3-H2 flames have a compact structure, while the non-premixed flames exhibit a large gap between NH3- and NH-PLIF layers, where ammonia undergoes significant decomposition before reaching the reaction layer. The inner edge of the NO-PLIF layer overlaps well with the reaction layer represented by the NH-PLIF layer in all flames. The fully developed turbulent structure downstream of the NH3-H2 flame causes pinching-off of the premixed flame front and local extinction of the diffusion flame front.
UR - http://hdl.handle.net/10754/693427
UR - https://linkinghub.elsevier.com/retrieve/pii/S0010218023003577
U2 - 10.1016/j.combustflame.2023.112981
DO - 10.1016/j.combustflame.2023.112981
M3 - Article
SN - 0010-2180
VL - 256
SP - 112981
JO - Combustion and Flame
JF - Combustion and Flame
ER -