Abstract
In the works of Pericak-Spector and Spector (Arch Rational Mech Anal. 101:293–317, 1988, Proc. Royal Soc. Edinburgh SectA127:837–857, 1997) a class of self-similar solutions are constructed for the equations of radial isotropic elastodynamics that describe cavitating solutions. Cavitating solutions decrease the total mechanical energy and provide a striking example of non-uniqueness of entropy weak solutions (for polyconvex energies) due to point-singularities at the cavity. To resolve this paradox, we introduce the concept of singular limiting induced from continuum solution (or slic-solution), according to which a discontinuous motion is a slic-solution if its averages form a family of smooth approximate solutions to the problem. It turns out that there is an energetic cost for creating the cavity, which is captured by the notion of slic-solution but neglected by the usual entropic weak solutions. Once this cost is accounted for, the total mechanical energy of the cavitating solution is in fact larger than that of the homogeneously deformed state. We also apply the notion of slic-solutions to a one-dimensional example describing the onset of fracture, and to gas dynamics in Langrangean coordinates with Riemann data inducing vacuum in the wave fan.
Original language | English (US) |
---|---|
Pages (from-to) | 241-281 |
Number of pages | 41 |
Journal | Archive for Rational Mechanics and Analysis |
Volume | 212 |
Issue number | 1 |
DOIs | |
State | Published - Oct 8 2013 |
Externally published | Yes |
ASJC Scopus subject areas
- Analysis
- Mathematics (miscellaneous)
- Mechanical Engineering