Small-Signal Circuit Model for Synchronous Buck DC/DC Converter featuring ZVS at Low-Side

Francesco Gabriele, Fabio Pareschi, Gianluca Setti, Riccardo Rovatti, Davide Lena, Maria Rosa Borghi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

In this paper we provide an improved small-signal equivalent circuit model of a synchronous Buck converter which operates in Continuous Conduction Mode (CCM) and includes an alternative Zero Voltage Switching (ZVS) mechanism for the low-side power MOSFET that rely on the MOSFETs output capacitance. The addressed analysis improves the state of the art in DC/DC small-signal modeling as it is capable to predict unexpected effects on the dynamical system response such as the dependency on input voltage introduced by parasitics. Therefore, a complete design tool which permits to evaluate the impact of the MOSFETs output capacitance and the ZVS network on the converter dynamics is proposed. The derived equivalent circuit model which includes an additional feedforward path and a feedback loop is analyzed and the main open-loop transfer functions (control-to-output, line-to-output, output impedance) are analytically assessed. A verification has been carried out through SIMPLIS circuital simulations, corroborating the validity of the whole evaluation process.

Original languageEnglish (US)
Title of host publicationISCAS 2023 - 56th IEEE International Symposium on Circuits and Systems, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781665451093
DOIs
StatePublished - 2023
Event56th IEEE International Symposium on Circuits and Systems, ISCAS 2023 - Monterey, United States
Duration: May 21 2023May 25 2023

Publication series

NameProceedings - IEEE International Symposium on Circuits and Systems
Volume2023-May
ISSN (Print)0271-4310

Conference

Conference56th IEEE International Symposium on Circuits and Systems, ISCAS 2023
Country/TerritoryUnited States
CityMonterey
Period05/21/2305/25/23

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Small-Signal Circuit Model for Synchronous Buck DC/DC Converter featuring ZVS at Low-Side'. Together they form a unique fingerprint.

Cite this