TY - JOUR
T1 - Solvent-free assembly of Co/Fe-containing MOFs derived N-doped mesoporous carbon nanosheets for ORR and HER
AU - Wang, Yu
AU - Pan, Ying
AU - Zhu, Liangkui
AU - Yu, Honghao
AU - Duan, Bingyi
AU - Wang, Runwei
AU - Zhang, Zongtao
AU - Qiu, Shilun
N1 - KAUST Repository Item: Exported on 2021-03-12
Acknowledged KAUST grant number(s): CRG-1-2012-LAI-009
Acknowledgements: This work was financially supported by the National Natural Science Foundation of China (21390394, 21771082 and 21771081), National Basic Research Program of China (2012CB821700 and 2011CB808703), NSFC (21261130584 and 91022030), “111” project (B07016), Award Project of KAUST (CRG-1-2012-LAI-009) and Ministry of Education, Science and Technology Development Center Project (20120061130012).
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2019/5
Y1 - 2019/5
N2 - The difficulties in integration of different active sites and structural optimization are huge obstacles in developing multi-functional electrocatalysts. In the present work, a molten salt-assisted solid state assembly strategy is developed to prepare Fe/Co Zn MOFs composites. Subsequent carbonization of these MOFs yields Fe/Co decorated nitrogen doped mesoporous carbon (Fe/Co–NCs). The obtained NCs possess several merits, such as i, Sheet-like structure with high porosity and tubular large mesopores (15 nm); ii, N-doped carbon skeleton; iii, Highly dispersed Fe/Co nanoparticles. Benefit from these structural superiority and the synergy between active sites, Fe/Co-NC showed high activity toward both ORR and HER. Among those, the Fe-NC showed excellent ORR activity, experienced four-electron ORR process showing high onset potential (0.963 V), half-wave potential (0.877 V vs. RHE) and outstanding durability (95% current retention after 20000 s). The Co-NC showed high HER activity, achieving a current density of 10 mA cm −3 with low over potential of 242 mV. The remarkable ORR and HER performance can be mainly attributed to the simultaneous incorporation of multi active centers, i.e. nitrogen moieties and metal species (Fe/Co) to synergistically boost the ORR and HER process, and high porosity to accelerate mass and electron transfer.
AB - The difficulties in integration of different active sites and structural optimization are huge obstacles in developing multi-functional electrocatalysts. In the present work, a molten salt-assisted solid state assembly strategy is developed to prepare Fe/Co Zn MOFs composites. Subsequent carbonization of these MOFs yields Fe/Co decorated nitrogen doped mesoporous carbon (Fe/Co–NCs). The obtained NCs possess several merits, such as i, Sheet-like structure with high porosity and tubular large mesopores (15 nm); ii, N-doped carbon skeleton; iii, Highly dispersed Fe/Co nanoparticles. Benefit from these structural superiority and the synergy between active sites, Fe/Co-NC showed high activity toward both ORR and HER. Among those, the Fe-NC showed excellent ORR activity, experienced four-electron ORR process showing high onset potential (0.963 V), half-wave potential (0.877 V vs. RHE) and outstanding durability (95% current retention after 20000 s). The Co-NC showed high HER activity, achieving a current density of 10 mA cm −3 with low over potential of 242 mV. The remarkable ORR and HER performance can be mainly attributed to the simultaneous incorporation of multi active centers, i.e. nitrogen moieties and metal species (Fe/Co) to synergistically boost the ORR and HER process, and high porosity to accelerate mass and electron transfer.
UR - http://hdl.handle.net/10754/668087
UR - https://linkinghub.elsevier.com/retrieve/pii/S0008622319301150
UR - http://www.scopus.com/inward/record.url?scp=85062278174&partnerID=8YFLogxK
U2 - 10.1016/j.carbon.2019.02.002
DO - 10.1016/j.carbon.2019.02.002
M3 - Article
SN - 0008-6223
VL - 146
SP - 671
EP - 679
JO - Carbon
JF - Carbon
ER -