TY - JOUR
T1 - Sonochemical synthesis and fabrication of perovskite type calcium titanate interfacial nanostructure supported on graphene oxide sheets as a highly efficient electrocatalyst for electrochemical detection of chemotherapeutic drug
AU - Tseng, Tien Wen
AU - Rajaji, Umamaheswari
AU - Chen, Tse Wei
AU - Chen, Shen Ming
AU - Huang, Yi Chen
AU - Mani, Veerappan
AU - Irudaya Jothi, A.
N1 - Generated from Scopus record by KAUST IRTS on 2023-09-21
PY - 2020/12/1
Y1 - 2020/12/1
N2 - In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015–1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM−1 cm−2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
AB - In green approaches for electrocatalyst synthesis, sonochemical methods play a powerful role in delivering the abundant surface areas and nano-crystalline properties that are advantageous to electrocatalytic detection. In this article, we proposed the sphere-like and perovskite type of bimetal oxides which are synthesized through an uncomplicated sonochemical procedure. As a yield, the novel calcium titanate (orthorhombic nature) nanoparticles (CaTiO3 NPs) decorated graphene oxide sheets (GOS) were obtained through simple ultrasonic irradiation by a high-intensity ultrasonic probe (Titanium horn; 50 kHz and 60 W). The GOS/CaTiO3 NC were characterized morphologically and chemically through the analytical methods (SEM, XRD, and EDS). Besides, as-prepared nanocomposites were modified on a GCE (glassy carbon electrode) and applied towards electrocatalytic and electrochemical sensing of chemotherapeutic drug flutamide (FD). Notably, FD is a crucial anticancer drug and also a non-steroidal anti-androgen chemical. Mainly, the designed and modified sensor has shown a wide linear range (0.015–1184 µM). A limit of detection was calculated as nanomolar level (5.7 nM) and sensitivity of the electrode is 1.073 μA μM−1 cm−2. The GOS/CaTiO3 modified electrodes have been tested in human blood and urine samples towards anticancer drug detection.
UR - https://linkinghub.elsevier.com/retrieve/pii/S1350417719320875
UR - http://www.scopus.com/inward/record.url?scp=85087802802&partnerID=8YFLogxK
U2 - 10.1016/j.ultsonch.2020.105242
DO - 10.1016/j.ultsonch.2020.105242
M3 - Article
SN - 1873-2828
VL - 69
JO - Ultrasonics Sonochemistry
JF - Ultrasonics Sonochemistry
ER -