TY - JOUR
T1 - Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor
AU - Ali, Muhammad
AU - Rathnayake, Rathnayake M.L.D.
AU - Zhang, Lei
AU - Ishii, Satoshi
AU - Kindaichi, Tomonori
AU - Satoh, Hisashi
AU - Toyoda, Sakae
AU - Yoshida, Naohiro
AU - Okabe, Satoshi
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was financially supported by Japan Science and Technology Agency (JST) CREST, Nagase Science and Technology Foundation, and Institute for Fermentation, Osaka (IFO), which were granted to S. Okabe. Authors express gratitude to the Gene Science Division, Natural Science Center for Basic Research and Development, Hiroshima University for their technical support for FISH analysis. Authors are thankful for Yoshitaka Uchida (Assistant Professor, Hokkaido University) for useful discussion and providing technical support for dissolved N2O measurements.
PY - 2016/6/21
Y1 - 2016/6/21
N2 - Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes.
AB - Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4+ concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2− reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2− reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2− reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes.
UR - http://hdl.handle.net/10754/614390
UR - http://linkinghub.elsevier.com/retrieve/pii/S0043135416304729
UR - http://www.scopus.com/inward/record.url?scp=84975292935&partnerID=8YFLogxK
U2 - 10.1016/j.watres.2016.06.034
DO - 10.1016/j.watres.2016.06.034
M3 - Article
C2 - 27340816
SN - 0043-1354
VL - 102
SP - 147
EP - 157
JO - Water Research
JF - Water Research
ER -