Source-independent efficient wavefield inversion

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

Summary Full-waveform inversion (FWI) is an effective tool to retrieve a high-resolution subsurface velocity model. The source wavelet accuracy plays an important role in reaching that goal. So we often need to estimate the source function before or within the inversion process. Source estimation requires additional computational cost, and an inaccurate source estimation can hamper the convergence of FWI. We develop a source-independent waveform inversion utilizing a recently introduced wavefield reconstruction based method we refer to as efficient wavefield inversion (EWI). In EWI, we essentially reconstruct the wavefield by fitting it to the observed data as well as a wave equation based on iterative Born scattering. However, a wrong source wavelet will induce errors in the reconstructed wavefield, which may lead to a divergence of this optimization problem. We use a convolution-based source-independent misfit function to replace the conventional data fitting term in EWI to formulate a source-independent EWI (SIEWI) objective function. By convolving the observed data with a reference trace from the predicted data and convolving the predicted data with a reference trace from the observed data, the influence of the source wavelet on the optimization is mitigated. In SIEWI, this new formulation is able to mitigate the cycle-skipping issue and the source wavelet uncertainty, simultaneously. We demonstrate those features on the Overthrust model and a modified Marmousi model. Application on a 2D real dataset also shows the effectiveness of the proposed method.
Original languageEnglish (US)
JournalGeophysical Journal International
DOIs
StatePublished - Apr 22 2020

Fingerprint

Dive into the research topics of 'Source-independent efficient wavefield inversion'. Together they form a unique fingerprint.

Cite this