TY - JOUR
T1 - Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection
AU - Chen, Lisha
AU - Huang, Jianhua Z.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledged KAUST grant number(s): KUS-CI-016-04
Acknowledgements: Lisha Chen is Assistant Professor, Department of Statistics, Yale University, New Haven, CT 06511 (E-mail: [email protected]). Jianhua Z. Huang is Professor, Department of Statistics, Texas A&M University, College Station, TX 77843-3143 (E-mail: [email protected]). Huang's work was partially supported by grants from the National Science Foundation (NSF; DMS-0907170, DMS-1007618, DMS-1208952) and Award Number KUS-CI-016-04, made by King Abdullah University of Science and Technology (KAUST). The authors thank Joseph Chang, Dean Foster, Zhihua Qiao, Lyle Ungar, and Lan Zhou for helpful discussions. They also thank two anonymous reviewers, an associate editor and the co-editor Jun Liu for constructive comments.
This publication acknowledges KAUST support, but has no KAUST affiliated authors.
PY - 2012/10/8
Y1 - 2012/10/8
N2 - The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.
AB - The reduced-rank regression is an effective method in predicting multiple response variables from the same set of predictor variables. It reduces the number of model parameters and takes advantage of interrelations between the response variables and hence improves predictive accuracy. We propose to select relevant variables for reduced-rank regression by using a sparsity-inducing penalty. We apply a group-lasso type penalty that treats each row of the matrix of the regression coefficients as a group and show that this penalty satisfies certain desirable invariance properties. We develop two numerical algorithms to solve the penalized regression problem and establish the asymptotic consistency of the proposed method. In particular, the manifold structure of the reduced-rank regression coefficient matrix is considered and studied in our theoretical analysis. In our simulation study and real data analysis, the new method is compared with several existing variable selection methods for multivariate regression and exhibits competitive performance in prediction and variable selection. © 2012 American Statistical Association.
UR - http://hdl.handle.net/10754/599681
UR - https://www.tandfonline.com/doi/full/10.1080/01621459.2012.734178
UR - http://www.scopus.com/inward/record.url?scp=84871942172&partnerID=8YFLogxK
U2 - 10.1080/01621459.2012.734178
DO - 10.1080/01621459.2012.734178
M3 - Article
SN - 0162-1459
VL - 107
SP - 1533
EP - 1545
JO - Journal of the American Statistical Association
JF - Journal of the American Statistical Association
IS - 500
ER -