TY - GEN
T1 - Spatial Correlation Characterization of a Full Dimension Massive MIMO System
AU - Nadeem, Qurrat-Ul-Ain
AU - Kammoun, Abla
AU - Debbah, Merouane
AU - Alouini, Mohamed-Slim
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: The work of Q.-U.-A. Nadeem, A. Kammoun and M. -S. Alouini was supported by a CRG 3 grant from the Office of Sponsored Research at KAUST. The work of M´erouane Debbah was supported by ERC Starting Grant 305123 MORE (Advanced Mathematical Tools for Complex Network Engineering).
PY - 2017/2/7
Y1 - 2017/2/7
N2 - Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.
AB - Elevation beamforming and Full Dimension MIMO (FD-MIMO) are currently active areas of research and standardization in 3GPP LTE-Advanced. FD-MIMO utilizes an active antenna array system (AAS), that provides the ability of adaptive electronic beam control over the elevation dimension, resulting in a better system performance as compared to the conventional 2D MIMO systems. FD-MIMO is more advantageous when amalgamated with massive MIMO systems, in that it exploits the additional degrees of freedom offered by a large number of antennas in the elevation. To facilitate the evaluation of these systems, a large effort in 3D channel modeling is needed. This paper aims at providing a summary of the recent 3GPP activity around 3D channel modeling. The 3GPP proposed approach to model antenna radiation pattern is compared with the ITU approach. A closed-form expression is then worked out for the spatial correlation function (SCF) for channels constituted by individual antenna elements in the array by exploiting results on spherical harmonics and Legendre polynomials. The proposed expression can be used to obtain correlation coefficients for any arbitrary 3D propagation environment. Simulation results corroborate and study the derived spatial correlation expression. The results are directly applicable to the analysis of future 5G 3D massive MIMO systems.
UR - http://hdl.handle.net/10754/623911
UR - http://ieeexplore.ieee.org/document/7842281/
UR - http://www.scopus.com/inward/record.url?scp=85015436015&partnerID=8YFLogxK
U2 - 10.1109/glocom.2016.7842281
DO - 10.1109/glocom.2016.7842281
M3 - Conference contribution
SN - 9781509013289
BT - 2016 IEEE Global Communications Conference (GLOBECOM)
PB - Institute of Electrical and Electronics Engineers (IEEE)
ER -