Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm

Alireza Arabameri, Biswajeet Pradhan, Khalil Rezaei, Mojtaba Yamani, Hamid Reza Pourghasemi, Luigi Lombardo

Research output: Contribution to journalArticlepeer-review

101 Scopus citations

Abstract

This study aims to assess gully erosion susceptibility and delineate gully erosion-prone areas in Toroud Watershed, Semnan Province, Iran. Two different methods, namely, logistic regression (LR) and evidential belief function (EBF), were evaluated, and a new ensemble method was proposed using the combination of both methods. We initially created a gully erosion inventory map using different resources, including early reports, Google Earth images, and Global Positioning System-aided field surveys. We subsequently split this information randomly and selected 70% (90) of the gullies for calibration and 30% (38) for validation. The method was constructed using a combination of morphometric and thematic predictors that include 16 conditioning parameters. We also assessed the following: (a) potential multicollinearity issues using tolerance and variance inflation factor indices and (b) covariate effects using LR coefficients and EBF class weights. Results show that land use/land cover, lithology, and distance to roads dominate the method with the greatest effect on gully occurrences. We produced three susceptibility maps and evaluated their predictive power through area under the curve (AUC) and seed cell area index analyses. AUC results revealed that the ensemble method presented a considerably higher performance (AUC = 0.909) than did the individual LR (0.802) and EBF (0.821) methods. Similarly, seed cell area index displayed a constant decrease from the ensemble to single methods. The resulted gully erosion-susceptibility map could be used by decision makers and local managers for soil conservation, and for minimising damages in development activities including construction of infrastructures such as roads and the route of gas and electricity transmission lines.
Original languageEnglish (US)
Pages (from-to)4035-4049
Number of pages15
JournalLand Degradation & Development
Volume29
Issue number11
DOIs
StatePublished - Sep 25 2018

Fingerprint

Dive into the research topics of 'Spatial modelling of gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief function-logistic regression algorithm'. Together they form a unique fingerprint.

Cite this