Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames

Abdulrahman A. Khateeb, Thibault Guiberti, Xuren Zhu, Mourad Younes, Aqil Jamal, William L. Roberts

Research output: Contribution to journalArticlepeer-review

135 Scopus citations

Abstract

Hydrogen is a promising carbon-free fuel for power generation in gas turbines. However, this raises some challenges associated with the storage and distribution of pure hydrogen. Storing hydrogen chemically in the form of ammonia is a safe and efficient alternative. However, ammonia as a fuel features a low chemical reactivity compared to hydrogen and natural gas and, as a consequence, stabilizing turbulent ammonia-air flames is challenging. Offsetting this low reactivity by enriching ammonia with some amount of hydrogen, which is much more reactive, is a promising strategy. In this study, the stability limits of technically-premixed ammonia-hydrogen-air flames are measured in a laboratory-scale swirl combustor for a wide range of ammonia fractions in the ammonia-hydrogen fuel blend. Results are compared to that obtained in the same combustor for reference methane-hydrogen-air mixtures. Data show that increasing the ammonia fraction in the fuel blend promotes lean blowout but reduces the flames’ propensity to flashback. The latter effect is even more pronounced if the volume fraction of ammonia in the fuel blend exceeds 0.7. In that case, increasing the equivalence ratio at a fixed bulk velocity does not yield flashback and rich blowout occurs instead, yielding a much wider range of stable equivalence ratios. This study also reports exhaust NO mole fractions, measured for large ranges of equivalence ratio and ammonia fraction in the fuel blend. Regardless of the ammonia fraction, data show that competitively low NO emissions occur for slightly rich equivalence ratios of φ ≥ 1.05, which is consistent with earlier studies. Stable flames and good NO performance are also found for very lean ammonia-hydrogen-air mixtures with φ ≤ 0.50, demonstrating the strong potential of fueling gas turbines with ammonia-hydrogen blends.
Original languageEnglish (US)
Pages (from-to)22008-22018
Number of pages11
JournalInternational Journal of Hydrogen Energy
Volume45
Issue number41
DOIs
StatePublished - Jul 7 2020

Fingerprint

Dive into the research topics of 'Stability limits and NO emissions of technically-premixed ammonia-hydrogen-nitrogen-air swirl flames'. Together they form a unique fingerprint.

Cite this