TY - JOUR
T1 - Staining of fluid-catalytic-cracking catalysts: Localising Brønsted acidity within a single catalyst particle
AU - Buurmans, Inge L.C.
AU - Ruiz-Martínez, Javier
AU - Vana Leeuwen, Sanne L.
AU - Vana Dera Beek, David
AU - Bergwerff, Jaap A.
AU - Knowles, William V.
AU - Vogt, Eelco T.C.
AU - Weckhuysen, Bert M.
N1 - Generated from Scopus record by KAUST IRTS on 2019-08-08
PY - 2012/1/23
Y1 - 2012/1/23
N2 - A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components (zeolite, clay, alumina and silica) was monitored by UV/Vis micro-spectroscopy and showed that only clay and zeolites (Y and ZSM-5) contain Brønsted acid sites that are strong enough to catalyse the conversion of 4-fluorostyrene into carbocationic species. By applying the same approach to complete FCC catalyst particles, it has been found that the fingerprint of the zeolitic UV/Vis spectra is clearly recognisable. This almost exclusive zeolitic activity is confirmed by the fact that hardly any reactivity is observed for FCC particles that contain no zeolite. Confocal fluorescence microscopy images of FCC catalyst particles reveal inhomogeneously distributed micron-sized zeolite domains with a highly fluorescent signal upon reaction. By examining laboratory deactivated FCC catalyst particles in a statistical approach, a clear trend of decreasing fluorescence intensity, and thus Brønsted acidity, of the zeolite domains is observed with increasing severity of the deactivation method. By comparing the average fluorescence intensities obtained with two styrenes that differ in reactivity, it has been found that the Brønsted acid site strength within FCC catalyst particles containing ZSM-5 is more uniform than within those containing zeolite Y, as confirmed with temperature-programmed desorption of ammonia. Colouring acidity: Confocal fluorescence microscopy combined with an acid-catalysed probe reaction has led to the successful determination of the Brønsted acid sites within individual fluid-catalytic-cracking (FCC) catalyst particles. Zeolite domains are inhomogeneously distributed within the catalyst particles (see scheme; scale bars=10a μm). Deactivated FCC catalyst particles show a gradual decrease in Brønsted acidity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
AB - A time-resolved in situ micro-spectroscopic approach has been used to investigate the Brønsted acidic properties of fluid-catalytic-cracking (FCC) catalysts at the single particle level by applying the acid-catalysed styrene oligomerisation probe reaction. The reactivity of individual FCC components (zeolite, clay, alumina and silica) was monitored by UV/Vis micro-spectroscopy and showed that only clay and zeolites (Y and ZSM-5) contain Brønsted acid sites that are strong enough to catalyse the conversion of 4-fluorostyrene into carbocationic species. By applying the same approach to complete FCC catalyst particles, it has been found that the fingerprint of the zeolitic UV/Vis spectra is clearly recognisable. This almost exclusive zeolitic activity is confirmed by the fact that hardly any reactivity is observed for FCC particles that contain no zeolite. Confocal fluorescence microscopy images of FCC catalyst particles reveal inhomogeneously distributed micron-sized zeolite domains with a highly fluorescent signal upon reaction. By examining laboratory deactivated FCC catalyst particles in a statistical approach, a clear trend of decreasing fluorescence intensity, and thus Brønsted acidity, of the zeolite domains is observed with increasing severity of the deactivation method. By comparing the average fluorescence intensities obtained with two styrenes that differ in reactivity, it has been found that the Brønsted acid site strength within FCC catalyst particles containing ZSM-5 is more uniform than within those containing zeolite Y, as confirmed with temperature-programmed desorption of ammonia. Colouring acidity: Confocal fluorescence microscopy combined with an acid-catalysed probe reaction has led to the successful determination of the Brønsted acid sites within individual fluid-catalytic-cracking (FCC) catalyst particles. Zeolite domains are inhomogeneously distributed within the catalyst particles (see scheme; scale bars=10a μm). Deactivated FCC catalyst particles show a gradual decrease in Brønsted acidity. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
UR - http://doi.wiley.com/10.1002/chem.201102949
U2 - 10.1002/chem.201102949
DO - 10.1002/chem.201102949
M3 - Article
SN - 0947-6539
VL - 18
JO - Chemistry - A European Journal
JF - Chemistry - A European Journal
IS - 4
ER -