Statistical modeling and design of discrete-time chaotic processes: Advanced finite-dimensional tools and applications

Riccardo Rovatti, Gianluca Mazzini, Gianluca Setti, Alessandra Giovanardi

Research output: Contribution to journalArticlepeer-review

38 Scopus citations

Abstract

With the aim of explaining the formal development behind the chaos-based modeling of network traffic and other similar phenomena, here we generalize the tools presented in the companion paper (Setti et al., 2002) to the case of piecewise-affine Markov maps with a possibly infinite, but countable number of Markov intervals. Since, in doing so, we keep the dimensionality of the space of the observables finite, we still obtain a finite tensor-based framework. Nevertheless, the increased complexity of the model forces the use of tensors of functions whose handling is greatly simplified by extensive a transformation. With this, a systematic procedure is devised to write analytical expressions for the tensors that take into account the joint probability assignments needed to compute any-order expectations. As an example of use, this machinery is finally applied to the study of self-similarity of quantized processes both in the analysis of higher order phenomena as well as in the analysis and design of second-order self-similar sources suitable for artificial network traffic generation. © 2002 IEEE.
Original languageEnglish (US)
Pages (from-to)820-841
Number of pages22
JournalProceedings of the IEEE
Volume90
Issue number5
DOIs
StatePublished - Jan 1 2002
Externally publishedYes

ASJC Scopus subject areas

  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Statistical modeling and design of discrete-time chaotic processes: Advanced finite-dimensional tools and applications'. Together they form a unique fingerprint.

Cite this