Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames

Antonio Attili, Fabrizio Bisetti

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Turbulence and mixing statistics are investigated in a set of flames at a jet Reynolds number of 15000 achieving a Taylor’s scale Reynolds number in the range 100 ≤Reλ ≤ 150. In particular, the impact on small scale turbulence statistics of different levels of flame extinction, induced imposing different Damköhler numbers in the three simulated cases, is investigated. It is found that the non-dimensional scalar dissipation depends on the Damköhler number slightly. This deviation from self-similarity manifests itself as a decrease of the non-dimensional scalar dissipation with increasing occurrence of localized extinction events. This is caused by the decrease of molecular diffusion due to the lower flame temperatures in the low Damköhler number cases. Probability density functions of the scalar dissipation χ show important deviations from the log-normal distribution. The left tail of the pdf scales as χ1/2 while the right tail scales as e−cχα, as shown for incompressible turbulence. In all flames, the vorticity vector displays a pronounced tendency to align with the direction of the intermediate strain and the gradient of mixture fraction aligns with the most compressive strain. Conditioning on the local values of mixture fraction and heat release does not affect the statistics. The alignment statistics of vorticity are in agreement with those in homogeneous isotropic turbulence while they show some difference compared to previous results in non premixed flames. The alignment between strain and mixture fraction gradient differs slightly from the homogeneous isotropic turbulent case but agree remarkably well with previous results observed in homogeneous shear incompressible flows.
Original languageEnglish (US)
JournalFlow, Turbulence and Combustion
DOIs
StatePublished - Jun 6 2019
Externally publishedYes

ASJC Scopus subject areas

  • General Physics and Astronomy
  • General Chemical Engineering
  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Statistics of Scalar Dissipation and Strain/Vorticity/Scalar Gradient Alignment in Turbulent Nonpremixed Jet Flames'. Together they form a unique fingerprint.

Cite this