Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation

Hai Guo, Cheng Gang Niu, Cheng Yang Feng, Chao Liang, Lei Zhang, Xiao Ju Wen, Yang Yang, Hui Yun Liu, Lu Li, Li Shen Lin

Research output: Contribution to journalArticlepeer-review

135 Scopus citations

Abstract

Light-driven reactive oxygen species (ROS) generation from molecular oxygen activation is normally recognized as an effective route for environmental pollutants removal. Herein, oxygen-substituted ultrathin porous graphitic carbon nitride (g-C3N4) nanosheets are prepared through a two-step hydrothermal-recalcination treatment of bulk g-C3N4 (BCN), and it is found that the obtained samples display enhanced ROS generation, as reflected by the removal of oxytetracycline hydrochloride (OTC). When stimulated by visible light, about 85.76% of OTC can be removed by the optimal sample (OCN-24-550) within 120 min, which is obviously higher than that of bulk g-C3N4 by a factor of 4.99. Meanwhile, nitroblue tetrazolium (NBT) transformation and H2O2 generation also indicate that the OCN-24-550 possess the highest reactivity, which can produce 47.25 μM of H2O2 and 9.07 × 10−10 M of the steady-state [rad]O2− during the reaction. The enhanced photocatalytic performance of OCN-24-550 is attributed to the synergistic effect of ultrathin porous structure and heteroatom O substitution. Specifically, the ultrathin porous structure can enlarge the surface area and then facilitate the diffusion of reactant, while the O substitution can optimize the electronic structure by creating a local electronic polarization effect, as confirmed by density functional theory (DFT) calculations, and thus result in a boosted exciton dissociation and accelerated charge migration. This work not only presents a comprehensive insight into g-C3N4-based reaction system from exciton and charge carrier, but also provides a meaningful guidance for exploring novel photocatalytic wastewater treatment devices from a more environment-friendly perspective.
Original languageEnglish (US)
JournalChemical Engineering Journal
Volume385
DOIs
StatePublished - Apr 1 2020
Externally publishedYes

ASJC Scopus subject areas

  • Environmental Chemistry
  • General Chemical Engineering
  • General Chemistry
  • Industrial and Manufacturing Engineering

Fingerprint

Dive into the research topics of 'Steering exciton dissociation and charge migration in green synthetic oxygen-substituted ultrathin porous graphitic carbon nitride for boosted photocatalytic reactive oxygen species generation'. Together they form a unique fingerprint.

Cite this