TY - GEN
T1 - Stochastic geometry model for multi-channel fog radio access networks
AU - Emara, Mostafa
AU - Elsawy, Hesham
AU - Sorour, Sameh
AU - Al-Ghadhban, Samir
AU - Alouini, Mohamed-Slim
AU - Al-Naffouri, Tareq Y.
N1 - KAUST Repository Item: Exported on 2020-10-01
Acknowledgements: This research was funded by a grant from the office of competitive research funding (OCRF) at the King Abdullah University of Science and Technology (KAUST). The work was also supported by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, Saudi Arabia, through project number KAUST-002.
PY - 2017/6/27
Y1 - 2017/6/27
N2 - Cache-enabled base station (BS) densification, denoted as a fog radio access network (F-RAN), is foreseen as a key component of 5G cellular networks. F-RAN enables storing popular files at the network edge (i.e., BS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. The hitting probability, which is the probability of successfully transmitting popular files request from the network edge, is a fundamental key performance indicator (KPI) for F-RAN. This paper develops a scheduling aware mathematical framework, based on stochastic geometry, to characterize the hitting probability of F-RAN in a multi-channel environment. To this end, we assess and compare the performance of two caching distribution schemes, namely, uniform caching and Zipf caching. The numerical results show that the commonly used single channel environment leads to pessimistic assessment for the hitting probability of F-RAN. Furthermore, the numerical results manifest the superiority of the Zipf caching scheme and quantify the hitting probability gains in terms of the number of channels and cache size.
AB - Cache-enabled base station (BS) densification, denoted as a fog radio access network (F-RAN), is foreseen as a key component of 5G cellular networks. F-RAN enables storing popular files at the network edge (i.e., BS caches), which empowers local communication and alleviates traffic congestions at the core/backhaul network. The hitting probability, which is the probability of successfully transmitting popular files request from the network edge, is a fundamental key performance indicator (KPI) for F-RAN. This paper develops a scheduling aware mathematical framework, based on stochastic geometry, to characterize the hitting probability of F-RAN in a multi-channel environment. To this end, we assess and compare the performance of two caching distribution schemes, namely, uniform caching and Zipf caching. The numerical results show that the commonly used single channel environment leads to pessimistic assessment for the hitting probability of F-RAN. Furthermore, the numerical results manifest the superiority of the Zipf caching scheme and quantify the hitting probability gains in terms of the number of channels and cache size.
KW - Caching system
KW - F-RAN
KW - Multichannel
KW - Stochastic geometry
UR - http://www.scopus.com/inward/record.url?scp=85026243743&partnerID=8YFLogxK
U2 - 10.23919/WIOPT.2017.7959945
DO - 10.23919/WIOPT.2017.7959945
M3 - Conference contribution
AN - SCOPUS:85026243743
T3 - 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2017
BT - 2017 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 15th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt 2017
Y2 - 15 May 2017 through 19 May 2017
ER -