Stochastic Neural Field Theory and the System-Size Expansion

Paul C. Bressloff

Research output: Contribution to journalArticlepeer-review

108 Scopus citations

Abstract

We analyze a master equation formulation of stochastic neurodynamics for a network of synaptically coupled homogeneous neuronal populations each consisting of N identical neurons. The state of the network is specified by the fraction of active or spiking neurons in each population, and transition rates are chosen so that in the thermodynamic or deterministic limit (N → ∞) we recover standard activity-based or voltage-based rate models. We derive the lowest order corrections to these rate equations for large but finite N using two different approximation schemes, one based on the Van Kampen system-size expansion and the other based on path integral methods. Both methods yield the same series expansion of the moment equations, which at O(1/N) can be truncated to form a closed system of equations for the first-and second-order moments. Taking a continuum limit of the moment equations while keeping the system size N fixed generates a system of integrodifferential equations for the mean and covariance of the corresponding stochastic neural field model. We also show how the path integral approach can be used to study large deviation or rare event statistics underlying escape from the basin of attraction of a stable fixed point of the mean-field dynamics; such an analysis is not possible using the system-size expansion since the latter cannot accurately determine exponentially small transitions. © by SIAM.
Original languageEnglish (US)
Pages (from-to)1488-1521
Number of pages34
JournalSIAM Journal on Applied Mathematics
Volume70
Issue number5
DOIs
StatePublished - Jan 2010
Externally publishedYes

Fingerprint

Dive into the research topics of 'Stochastic Neural Field Theory and the System-Size Expansion'. Together they form a unique fingerprint.

Cite this