Strain engineering and epitaxial stabilization of halide perovskites.

Yimu Chen, Yusheng Lei, Yuheng Li, Yugang Yu, Jinze Cai, Ming-Hui Chiu, Rahul Rao, Yue Gu, Chunfeng Wang, Woojin Choi, Hongjie Hu, Chonghe Wang, Yang Li, Jiawei Song, Jingxin Zhang, Baiyan Qi, Muyang Lin, Zhuorui Zhang, Ahmad E Islam, Benji MaruyamaShadi Dayeh, Lain-Jong Li, Kesong Yang, Yu-Hwa Lo, Sheng Xu

Research output: Contribution to journalArticlepeer-review

482 Scopus citations

Abstract

Strain engineering is a powerful tool with which to enhance semiconductor device performance1,2. Halide perovskites have shown great promise in device applications owing to their remarkable electronic and optoelectronic properties3-5. Although applying strain to halide perovskites has been frequently attempted, including using hydrostatic pressurization6-8, electrostriction9, annealing10-12, van der Waals force13, thermal expansion mismatch14, and heat-induced substrate phase transition15, the controllable and device-compatible strain engineering of halide perovskites by chemical epitaxy remains a challenge, owing to the absence of suitable lattice-mismatched epitaxial substrates. Here we report the strained epitaxial growth of halide perovskite single-crystal thin films on lattice-mismatched halide perovskite substrates. We investigated strain engineering of α-formamidinium lead iodide (α-FAPbI3) using both experimental techniques and theoretical calculations. By tailoring the substrate composition-and therefore its lattice parameter-a compressive strain as high as 2.4 per cent is applied to the epitaxial α-FAPbI3 thin film. We demonstrate that this strain effectively changes the crystal structure, reduces the bandgap and increases the hole mobility of α-FAPbI3. Strained epitaxy is also shown to have a substantial stabilization effect on the α-FAPbI3 phase owing to the synergistic effects of epitaxial stabilization and strain neutralization. As an example, strain engineering is applied to enhance the performance of an α-FAPbI3-based photodetector.
Original languageEnglish (US)
Pages (from-to)209-215
Number of pages7
JournalNature
Volume577
Issue number7789
DOIs
StatePublished - Jan 8 2020

Fingerprint

Dive into the research topics of 'Strain engineering and epitaxial stabilization of halide perovskites.'. Together they form a unique fingerprint.

Cite this