Strong and Ultra-tough Ionic Hydrogel Based on Hyperbranched Macro-cross-linker: Influence of Topological Structure on Properties

Yu Jiang, Dezhi Zhan, Meng Zhang, Ying Zhu, Huiqing Zhong, Yangfei Wu, Qinwen Tan, Xinhua Dong, Daohong Zhang, Nikos Hadjichristidis

Research output: Contribution to journalArticlepeer-review

8 Scopus citations

Abstract

The application of hydrogels often suffers from their inherent limitation of poor mechanical properties. Here, a carboxyl-functionalized and acryloyl-terminated hyperbranched polycaprolactone (PCL) was synthesized and used as a macro-cross-linker to fabricate a super strong and ultra-tough ionic hydrogel. The terminal acryloyl groups of hyperbranched PCL are chemically incorporated into the network to form covalent cross-links, which contribute to robust networks. Meanwhile, the hydrophobic domains formed by the spontaneous aggregation of PCL chains and coordination bonds between Fe3+ and COO– groups serve as dynamic non-covalent cross-links, which enhance the energy dissipation ability. Especially, the influence of the hyperbranched topological structure of PCL on hydrogel properties has been well investigated, exhibiting superior strengthening and toughening effects compared to the linear one. Moreover, the hyperbranched PCL cross-linker also endowed the ionic hydrogel with higher sensitivity than the linear one when used as a strain sensor. As a result, this well-designed ionic hydrogel possesses high mechanical strength, superior toughness, and well ionic conductivity, exhibiting potential applications in the field of flexible strain sensors.
Original languageEnglish (US)
JournalAngewandte Chemie
DOIs
StatePublished - Aug 30 2023

ASJC Scopus subject areas

  • General Medicine

Fingerprint

Dive into the research topics of 'Strong and Ultra-tough Ionic Hydrogel Based on Hyperbranched Macro-cross-linker: Influence of Topological Structure on Properties'. Together they form a unique fingerprint.

Cite this