TY - JOUR
T1 - Structure and Interface Engineering of Ultrahigh-Rate 3D Bismuth Anodes for Sodium-Ion Batteries.
AU - Zhang, Xiaoshan
AU - Qiu, Xueqing
AU - Lin, Jinxin
AU - Lin, Zehua
AU - Sun, Shirong
AU - Yin, Jian
AU - Alshareef, Husam N.
AU - Zhang, Wenli
N1 - KAUST Repository Item: Exported on 2023-05-02
Acknowledgements: The authors acknowledge the financial support from the National Natural Science Foundation of China (No. 22108044), the National Key Research and Development Plan (No. 2018YFB1501503), the Research and Development Program in Key Fields of Guangdong Province (No. 2020B1111380002), the Basic Research and Applicable Basic Research in Guangzhou City (202201010290), and the financial support from the Guangdong Provincial Key Laboratory of Plant Resources Biorefinery (No. 2021GDKLPRB07).
PY - 2023/4/27
Y1 - 2023/4/27
N2 - Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g−1). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g−1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g−1. Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.
AB - Sodium-ion batteries (SIBs) have attracted tremendous attention as promising low-cost energy storage devices in future grid-scale energy management applications. Bismuth is a promising anode for SIBs due to its high theoretical capacity (386 mAh g−1). Nevertheless, the huge volume variation of Bi anode during (de)sodiation processes can cause the pulverization of Bi particulates and rupture of solid electrolyte interphase (SEI), resulting in quick capacity decay. It is demonstrated that rigid carbon framework and robust SEI are two essentials for stable Bi anodes. A lignin-derived carbonlayer wrapped tightly around the bismuth nanospheres provides a stable conductive pathway, while the delicate selection of linear and cyclic ether-based electrolytes enable robust and stable SEI films. These two merits enable the long-term cycling process of the LC-Bi anode. The LC-Bi composite delivers outstanding sodium-ion storage performance with an ultra-long cycle life of 10 000 cycles at a high current density of 5 A g−1 and an excellent rate capability of 94% capacity retention at an ultrahigh current density of 100 A g−1. Herein, the underlying origins of performance improvement of Bi anode are elucidated, which provides a rational design strategy for Bi anodes in practical SIBs.
UR - http://hdl.handle.net/10754/691373
UR - https://onlinelibrary.wiley.com/doi/10.1002/smll.202302071
U2 - 10.1002/smll.202302071
DO - 10.1002/smll.202302071
M3 - Article
C2 - 37104851
SN - 1613-6810
JO - Small (Weinheim an der Bergstrasse, Germany)
JF - Small (Weinheim an der Bergstrasse, Germany)
ER -